精英家教网 > 高中数学 > 题目详情
19.在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,则△ABC的面积为(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

分析 利用正弦定理求出B,判断三角形的形状,然后求解三角形的面积.

解答 解:在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,
可得sinB=$\frac{ACsinA}{BC}$$\frac{4×\frac{\sqrt{3}}{2}}{2\sqrt{3}}$=1则B=$\frac{π}{2}$,
三角形为直角三角形,AB=2,
三角形的面积为:$\frac{1}{2}×2×2\sqrt{3}$=2$\sqrt{3}$.
故选:B.

点评 本题考查正弦定理的应用,三角形的面积的求法,正确应用正弦定理是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是(  )
A.“至少1名男生”与“全是女生”
B.“至少1名男生”与“至少有1名是女生”
C.“至少1名男生”与“全是男生”
D.“恰好有1名男生”与“恰好2名女生”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x-3)+3(a>0且a≠1)恒过定点(4,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.4月15日我校组织高一年级同学听了一次法制方面的专题报告.为了解同学们对法制知识的掌握情况,学生会对20名学生做了一项调查测试,这20名同学的测试成绩(单位:分)的频率分布直方图如图:
(1)求频率分布直方图中a的值,并估计本次测试的中位数和平均成绩;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an},如果a4=7,a8=15.
(1)求数列{an}的通项公式;
(2)令bn=2n+an,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.A、B、C、D、E、F六人并排站成一排,如果A、B必须相邻且B在A的左边,那么不同的排法种数为(  )
A.720B.240C.120D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某班50名学生一次调研考试的数学成绩(满分:100分)的频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图,完成以下频数分布表:
成绩[60,70)[70,80)[80,90)[90,100)
频数    
(Ⅱ)用分层抽样的方法从成绩在[70,80)和[90,100)的学生中抽取4人,求成绩在[70,80)和[90,100)中抽取的人数;
(Ⅲ)估计这50名学生的数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列直线是函数$y=-2sin(\frac{1}{2}x-\frac{π}{6})$的对称轴的是(  )
A.x=πB.$x=\frac{π}{2}$C.$x=\frac{π}{3}$D.$x=-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案