精英家教网 > 高中数学 > 题目详情
8.下列直线是函数$y=-2sin(\frac{1}{2}x-\frac{π}{6})$的对称轴的是(  )
A.x=πB.$x=\frac{π}{2}$C.$x=\frac{π}{3}$D.$x=-\frac{2π}{3}$

分析 根据三角函数的性质求解可得.

解答 解:函数$y=-2sin(\frac{1}{2}x-\frac{π}{6})$,
则对称轴方程为:$\frac{1}{2}$x-$\frac{π}{6}$=$\frac{π}{2}+kπ$,k∈Z.
可得:x=$2kπ+\frac{4π}{3}$.
当k=-1时,可得x=$-\frac{2π}{3}$.
故选:D.

点评 本题主要考查三角函数的图象和性质的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求函数y=cos2x+asinx+$\frac{5}{8}$a+1(0≤x≤$\frac{π}{2}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,则△ABC的面积为(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展共享单车人数4512973
(Ⅰ)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:
年龄低于35岁年龄不低于35岁合计
支持
不支持
合计
(Ⅱ)若对年龄在[15,20)的被调查人中随机选取两人,对年龄在[20,25)的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是比赛中某选手的 7 个得分的茎叶图,则这7个分数的方差为(  )
A.$\frac{116}{9}$B.$\frac{34}{7}$C.36D.$\frac{{6\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-$\frac{1}{2}sin(2x-\frac{π}{6})$
(1)求f(x)的单调区间
(2)当x∈$[-\frac{π}{12},\frac{2π}{3}]$,求f(x)的最值及对应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.我国古代重要的数学著作《孙子算经》中有如下的数学问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为n,利用右边的程序框图解决问题,输出的S=(  )
A.81B.80C.72D.49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-3t}\\{y=-2+4t}\end{array}\right.$(t为参数).以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=tanθ.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)若C1与C2交于A,B两点,点P的极坐标为$({2\sqrt{2},-\frac{π}{4}})$,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}中,a1=1,an+1=$\frac{5}{2}$-$\frac{1}{{a}_{n}}$,bn=$\frac{1}{{a}_{n}-2}$,求b1,b2,b3,b4,猜想通项公式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案