精英家教网 > 高中数学 > 题目详情
20.我国古代重要的数学著作《孙子算经》中有如下的数学问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为n,利用右边的程序框图解决问题,输出的S=(  )
A.81B.80C.72D.49

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
S=1,n=32
满足条件n>0,执行循环体,S=33,n=24
满足条件n>0,执行循环体,S=57,n=16
满足条件n>0,执行循环体,S=73,n=8
满足条件n>0,执行循环体,S=81,n=0
不满足条件n>0,退出循环,输出S的值为81.
故选:A.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x-3)+3(a>0且a≠1)恒过定点(4,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某班50名学生一次调研考试的数学成绩(满分:100分)的频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图,完成以下频数分布表:
成绩[60,70)[70,80)[80,90)[90,100)
频数    
(Ⅱ)用分层抽样的方法从成绩在[70,80)和[90,100)的学生中抽取4人,求成绩在[70,80)和[90,100)中抽取的人数;
(Ⅲ)估计这50名学生的数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列直线是函数$y=-2sin(\frac{1}{2}x-\frac{π}{6})$的对称轴的是(  )
A.x=πB.$x=\frac{π}{2}$C.$x=\frac{π}{3}$D.$x=-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=ax3+3x2-x在R上是减函数,则a的取值范围为(  )
A.(-∞,3)B.(-∞,-3]C.[3,+∞)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,左、右顶点分别为A,B.以F1F2为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为$\frac{{2\sqrt{3}}}{3}$.设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点为O.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(I)求直线l的极坐标方程; 
(II)求直线l与曲线C交点的极坐标(ρ>0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)已知数列{bn}是项数为9的对称数列,且b1,b2,b3,b4,b5成等差数列,b1=2,b4=11,试求b6,b7,b8,b9,并求前9项和s9
(2)若{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为31,公差为-2的等差数列,数列
{cn}前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为1,公比为2的等比数列.求{dn}前n项的和Sn(n=1,2,…,100).

查看答案和解析>>

同步练习册答案