精英家教网 > 高中数学 > 题目详情
6.若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)已知数列{bn}是项数为9的对称数列,且b1,b2,b3,b4,b5成等差数列,b1=2,b4=11,试求b6,b7,b8,b9,并求前9项和s9
(2)若{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为31,公差为-2的等差数列,数列
{cn}前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为1,公比为2的等比数列.求{dn}前n项的和Sn(n=1,2,…,100).

分析 (1)求出{bn}的前4项,利用对称性得出后4项;
(2)根据对称性求出S2k-1关于k的函数,利用二次函数的性质得出S2k-1的最大值;
(3)由对称可知{dn}前50项为公比为$\frac{1}{2}$的等比数列,讨论n与50的大小关系得出Sn

解答 解:(1)设{bn}前5项的公差为d,则b4=b1+3d=2+3d=11,解得 d=3,
∴b6=b4=11,b7=b3=2+2×3=8,b8=b2=2+3=5,b9=b1=2,
∴s9=2(2+5+8+11+14)-14=66;                                
(2)S2k-1=c1+c2+…+ck-1+ck+ck+1+…+c2k-1=2(ck+ck+1+…+c2k-1)-ck
∴${S_{2k-1}}=2[{k×31+\frac{k(k-1)}{2}×(-2)}]-31=-2{(\;k-16\;)^2}+2×{16^2}-31$,
∴当k=16时,S2k-1取得最大值.S2k-1的最大值为481.               
(3)${d_{51}}=1,{d_{100}}=1×{2^{49}}={2^{49}}$.
由题意得 d1,d2,…,d50是首项为249,公比为$\frac{1}{2}$的等比数列.   
当n≤50时,Sn=d1+d2+…+dn=$\frac{{{2^{49}}(1-\frac{1}{2^n})}}{{1-\frac{1}{2}}}={2^{50}}-{2^{50-n}}$.       
当51≤n≤100时,Sn=d1+d2+…+dn=S50+(d51+d52+…+dn)=${2^{50}}-1+\frac{{1-{2^{n-50}}}}{1-2}={2^{50}}+{2^{n-50}}-2$
综上所述,${S_n}=\left\{{\begin{array}{l}{{2^{50}}-{2^{50-n}},1≤n≤50,\;\;\;\;}\\{{2^{50}}+{2^{n-50}}-2,51≤n≤100}\end{array}}\right.$.

点评 本题考查了等差数列,等比数列的性质,数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.我国古代重要的数学著作《孙子算经》中有如下的数学问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为n,利用右边的程序框图解决问题,输出的S=(  )
A.81B.80C.72D.49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.《九章算术》中记载了一种标准量器---商鞅铜方升,其三视图如图所示(单位:寸),则该几何体的容积为(  )立方寸.(π≈3.14)
A.12.656B.13.667C.11.414D.14.354

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}中,a1=1,an+1=$\frac{5}{2}$-$\frac{1}{{a}_{n}}$,bn=$\frac{1}{{a}_{n}-2}$,求b1,b2,b3,b4,猜想通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设点F(0,$\frac{1}{2}$),动圆P经过点F且和直线y=-$\frac{1}{2}$相切,记动圆的圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点F(0,$\frac{1}{2}$)的直线l与曲线E交于P、Q两点,设N(0,a)(a<0),$\overrightarrow{NP}$与$\overrightarrow{NQ}$的夹角为θ,若θ≤$\frac{π}{2}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,-6),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=5,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\frac{3}{sinx}-\frac{1}{tanx},x∈(0,\frac{π}{2})$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设M,N,P是单位圆上三点,若MN=1,则$\overrightarrow{MN}•\overrightarrow{MP}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案