精英家教网 > 高中数学 > 题目详情
16.设M,N,P是单位圆上三点,若MN=1,则$\overrightarrow{MN}•\overrightarrow{MP}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.3D.$\sqrt{3}$

分析 固定M,N两点,设P(cosα,sinα),代入平面向量的坐标运算,根据三角恒等变换化简得出最大值.

解答 解:设M(1,0),N($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),P(cosα,sinα),
则$\overrightarrow{MN}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{MP}$=(cosα-1,sinα),
∴$\overrightarrow{MN}•\overrightarrow{MP}$=$\frac{1}{2}$-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=$\frac{1}{2}-$cos(α+$\frac{π}{3}$),
∴当cos(α+$\frac{π}{3}$)=-1时,$\overrightarrow{MN}•\overrightarrow{MP}$取得最大值$\frac{3}{2}$.
故选A.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)已知数列{bn}是项数为9的对称数列,且b1,b2,b3,b4,b5成等差数列,b1=2,b4=11,试求b6,b7,b8,b9,并求前9项和s9
(2)若{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为31,公差为-2的等差数列,数列
{cn}前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为1,公比为2的等比数列.求{dn}前n项的和Sn(n=1,2,…,100).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是求样本x1,x2,…,x10平均数$\overline x$的程序框图,图中空白框中应填入的内容为(  )
A.S=S+xnB.$S=S+\frac{x_n}{n}$C.S=S+nD.$S=S+\frac{x_n}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,-1},B={1,0,-1},则集合C={a+b|a∈A,b∈B}中元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的总成绩是445,则污损的数字是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y=-2x2+bx+c在点(2,-1)处与直线y=x-3相切,则b+c的值为(  )
A.20B.9C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin60°cos15°-cos300°sin165°的值为(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,已知AB=AC=2BC,则sinA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,则m=$±2\sqrt{6}$.

查看答案和解析>>

同步练习册答案