精英家教网 > 高中数学 > 题目详情
7.如图是求样本x1,x2,…,x10平均数$\overline x$的程序框图,图中空白框中应填入的内容为(  )
A.S=S+xnB.$S=S+\frac{x_n}{n}$C.S=S+nD.$S=S+\frac{x_n}{10}$

分析 由题目要求可知:该程序的作用是求样本x1,x2,…,x10平均数$\overline{x}$,循环体的功能是累加各样本的值,从而求出答案.

解答 解:由题目要求可知:该程序的作用是求样本x1,x2,…,x10平均数$\overline{x}$,
循环体的功能是累加各样本的值,
故应为:S=S+xn
故选:A.

点评 程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.《九章算术》中记载了一种标准量器---商鞅铜方升,其三视图如图所示(单位:寸),则该几何体的容积为(  )立方寸.(π≈3.14)
A.12.656B.13.667C.11.414D.14.354

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\frac{3}{sinx}-\frac{1}{tanx},x∈(0,\frac{π}{2})$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a=$(\frac{1}{3})^{\frac{4}{5}}$,b=$(\frac{1}{4})^{\frac{4}{5}}$,c=$(\frac{1}{3})^{\frac{3}{5}}$,则(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.满足tanx<$\sqrt{3}$且x∈(0,π)的x的集合为{x|0<x<$\frac{π}{3}$,或$\frac{π}{2}$<x<π}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求导数:
(1)y=x3ex+2x2
(2)y=$\frac{{x}^{3}+1}{{x}^{2}}$+$\sqrt{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设M,N,P是单位圆上三点,若MN=1,则$\overrightarrow{MN}•\overrightarrow{MP}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将等差数列1,4,7…,按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第20行从左至右的第2个数是(  )
A.571B.574C.577D.580

查看答案和解析>>

同步练习册答案