精英家教网 > 高中数学 > 题目详情
1.《九章算术》中记载了一种标准量器---商鞅铜方升,其三视图如图所示(单位:寸),则该几何体的容积为(  )立方寸.(π≈3.14)
A.12.656B.13.667C.11.414D.14.354

分析 由三视图还原原几何体,该几何体为组合体,左边是圆柱,底面半径为0.5寸,母线长为1.6寸,右边为长方体,3.8寸,3寸,1寸.然后由长方体与圆柱的体积得答案.

解答 解:由三视图还原原几何体如图:

该几何体为组合体,左边是圆柱,底面半径为0.5寸,母线长为1.6寸,
右边为长方体,3.8寸,3寸,1寸.
则其体积V=3.14×(0.5)2×1.6+3.8×3×1=12.656.
故选:A.

点评 本题考查由三视图求原几何体的体积,关键是还原原几何体,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某班50名学生一次调研考试的数学成绩(满分:100分)的频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图,完成以下频数分布表:
成绩[60,70)[70,80)[80,90)[90,100)
频数    
(Ⅱ)用分层抽样的方法从成绩在[70,80)和[90,100)的学生中抽取4人,求成绩在[70,80)和[90,100)中抽取的人数;
(Ⅲ)估计这50名学生的数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(I)求直线l的极坐标方程; 
(II)求直线l与曲线C交点的极坐标(ρ>0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=2px(p>0),过点C(-4,0)作抛物线的两条切线CA,CB,A,B为切点,若直线AB经过抛物线y2=2px的焦点,△CAB的面积为24,则以直线AB为准线的抛物线标准方程是(  )
A.y2=4xB.y2=-4xC.y2=8xD.y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥的体积是(  )
A.$\frac{5}{6}$B.$\frac{4}{3}$C.$\frac{16}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C的对边分别为a,b,c,c=2$\sqrt{2}$,b2-a2=16,则角C的最大值为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)已知数列{bn}是项数为9的对称数列,且b1,b2,b3,b4,b5成等差数列,b1=2,b4=11,试求b6,b7,b8,b9,并求前9项和s9
(2)若{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为31,公差为-2的等差数列,数列
{cn}前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为1,公比为2的等比数列.求{dn}前n项的和Sn(n=1,2,…,100).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是求样本x1,x2,…,x10平均数$\overline x$的程序框图,图中空白框中应填入的内容为(  )
A.S=S+xnB.$S=S+\frac{x_n}{n}$C.S=S+nD.$S=S+\frac{x_n}{10}$

查看答案和解析>>

同步练习册答案