分析 由已知利用余弦定理,基本不等式即可得解cosC≥$\frac{\sqrt{3}}{2}$,结合C的范围,利用余弦函数的图象和性质可求C的最大值.
解答 解:∵c=2$\sqrt{2}$,b2-a2=16,可得:$\frac{1}{2}$(b2-a2)=8,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+{b}^{2}-8}{2ab}$=$\frac{{a}^{2}+{b}^{2}-\frac{1}{2}({b}^{2}-{a}^{2})}{2ab}$=$\frac{3{a}^{2}+{b}^{2}}{4ab}$≥$\frac{2\sqrt{3{a}^{2}{b}^{2}}}{4ab}$=$\frac{\sqrt{3}}{2}$,
∴由于C∈(0°,180°),可得:C≤60°,即角C的最大值为60°.
故答案为:60°.
点评 本题主要考查了余弦定理,基本不等式,余弦函数的图象和性质在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{116}{9}$ | B. | $\frac{34}{7}$ | C. | 36 | D. | $\frac{{6\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | (0,$\frac{4}{3}$) | C. | (0,2) | D. | ($\frac{4}{3}$,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12.656 | B. | 13.667 | C. | 11.414 | D. | 14.354 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -4 | C. | -8 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com