精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知AB=AC=2BC,则sinA=$\frac{\sqrt{15}}{8}$.

分析 令AB=AC=2BC=2m.即可得cosA=$\frac{A{C}^{2}+A{B}^{2}-B{C}^{2}}{2AB•AC}$,sinA

解答 解:令AB=AC=2BC=2m,由余弦定理可得cosA=$\frac{A{C}^{2}+A{B}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{7}{8}$,
∵A∈(0,π),∴sinA=$\sqrt{1-si{n}^{2}A}=\frac{\sqrt{15}}{8}$,
故答案为:$\frac{{\sqrt{15}}}{8}$.

点评 本题考查了余弦定理、平方关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设M,N,P是单位圆上三点,若MN=1,则$\overrightarrow{MN}•\overrightarrow{MP}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知P(a,1)是角β终边上的一点,且$cosβ=-\frac{{3\sqrt{10}}}{10}$,
(1)求a,sinβ,tanβ的值;   
(2)求$\frac{{sin(\frac{π}{2}+β)cos(-π-β)}}{{sin(\frac{11π}{2}-β)cos(\frac{9π}{2}+β)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn=n2+n,数列{bn}满足:bn=$\sqrt{{2^{a_n}}}$.
(1)求数列{bn}的通项公式;
(2)令cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知复数z=1+i(i为虚数单位),a、b∈R,
(Ⅰ)若$ω={z^2}+3\overline z-4$,求|ω|;
(Ⅱ)若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将等差数列1,4,7…,按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第20行从左至右的第2个数是(  )
A.571B.574C.577D.580

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一组数据2,x,4,5,10的平均值是5,则此组数据的标准差是$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于两个等差数列{an}和{bn},有a1+b100=100,b1+a100=100,则数列{an+bn}的前100项之和S100为10000.

查看答案和解析>>

同步练习册答案