精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为

1)求直线的普通方程以及曲线C的参数方程;

2)过曲线C上任意一点M作与直线的夹角为的直线,交于点N,求的最小值

【答案】10为参数);(2.

【解析】

1)消去,即得直线的普通方程,利用,得到曲线C的直角坐标方程,进而得到曲线C的参数方程;

2)设出点M的坐标,表示出点M到直线的距离,画出图形,得到,求出的最小值,即可求解.

1)将直线的参数方程消去参数

可得直线的普通方程为0

代入曲线C的极坐标方程,

可得曲线C的直角坐标方程为

故曲线C的参数方程为为参数)

2)设,则M的距离

,其中

如图,过点M于点P

,则在中,

时,取得最小值

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Snnn+2)(nN*).

1)求数列{an}的通项公式;

2)设bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,AB分别为椭圆的上、下顶点,若动直线l过点,且与椭圆相交于CD两个不同点(直线ly轴不重合,且CD两点在y轴右侧,CD的上方),直线ADBC相交于点Q

1)设的两焦点为,求的值;

2)若,且,求点Q的横坐标;

3)是否存在这样的点P,使得点Q的纵坐标恒为?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,,直线AGBG相交于点G,且它们的斜率之积为.记点G的轨迹为曲线C.

1)若射线与曲线C交于点D,且E为曲线C的最高点,证明:.

2)直线与曲线C交于MN两点,直线AMANy轴分别交于PQ两点.试问在x轴上是否存在定点T,使得以PQ为直径的圆恒过点T?若存在,求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的极值点的个数;

2)设函数为曲线上任意两个不同的点,设直线的斜率为,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论极值点的个数;

有两个极值点,证明:的极大值大于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,极点为,一条封闭的曲线由四段曲线组成:.

1)求该封闭曲线所围成的图形面积;

2)若直线与曲线恰有3个公共点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI),其中在轻度污染区、中度污染区、重度污染区分别设有243个监测站,并以9个监测站测得的AQI的平均值为依据播报该市的空气质量.

1)若某日播报的AQI119,已知轻度污染区AQI平均值为70,中度污染区AQI平均值为115,求重试污染区AQI平均值;

2)如图是201811月份30天的AQI的频率分布直方图,11月份仅有1AQI.

①某校参照官方公布的AQI,如果周日AQI小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;

②环卫部门从11月份AQI不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI值不小于200的天数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,离心率为,过点的直线交椭圆于点(不与左右顶点重合),连结,已知周长为8.

1)求椭圆的方程;

2)若直线的斜率为1,求的面积;

3)设,且,求直线的方程.

查看答案和解析>>

同步练习册答案