(本小题满分12分)盒中有大小相同的编号为1,2,3,4,5,6的六只小球,规定:从盒中一次摸出'2只球,如果这2只球的编号均能被3整除,则获一等奖,奖金10元,如果这2只球的编号均为偶数,则获二等奖,奖金2元,其他情况均不获奖.
(1)若某人参加摸球游戏一次获奖金x元,求x的分布列及期望;
(2)若某人摸一次且获奖,求他获得一等奖的概率.
(1)X的分布列为
|
X |
0 |
2 |
10 |
|
P(X) |
|
|
|
期望EX=
;(2)![]()
【解析】
试题分析:(1)易知X的可能取值为0,2, 10,
X的分布列为
|
X |
0 |
2 |
10 |
|
P(X) |
|
|
|
期望EX=
(元)………6分
(2)设摸一次得一等奖为事件A,摸一次得二等奖为事件B,
则
![]()
某人摸一次且获奖为事件
,显然A、B互斥 所以![]()
故某人摸一次且获奖,他获得一等奖的概率为:
………………12分
考点:本题考查了随机事件的概率及期望的求法
点评:本题考查了随机事件的概率及随机变量的分布列、期望的综合运用,考查了学生的计算能力及解决实际问题的能力,掌握求分布列的步骤及期望公式是解决此类问题的关键
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com