精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)当a=1时,求函数f(x)的图象在点A(0,f(0))处的切线方程;
(Ⅱ)讨论函数f(x)的单调性.

解:(I)a=1时,f(x)=(x2-2x+1)ex,f′(x)=(x2-1)ex
于是f(0)=1,f′(0)=-1,
所以函数f(x)的图象在点A(0,f(0))处的切线方程为y-1=-(x-0),即x+y-1=0.
(II)f′(x)=(2x-)eax+(x2-x+)•a•eax
=(2x-+ax2-2x+1)eax
=(ax2+)eax
∵a>0,eax>0,
∴只需讨论ax2+的符号.
ⅰ)当a>2时,ax2+>0,这和f′(x)>0,所以函数f(x)在(-∞,+∞)上为增函数.
ⅱ)当a=2时,f′(x)=2x2e2x≥0,函数f(x)在(-∞,+∞)上为增函数.
ⅲ)当0<a<2时,令f′(x)=0,解得x1=-,x2=
当x变化时,f′(x)和f(x)的变化情况如下表:
x(-∞,),-(-,+∞)
f′(x)+0-0+
f(x)极大值极小值
∴f(x)在(-∞,),(,+∞)为增函数,f(x)在(-)为减函数;
分析:(I)a=1时,可求得切线的斜率k=f′(0)及f(0),从而利用直线的点斜式可得函数f(x)的图象在点A(0,f(0))处的切线方程;
(II)求得f′(x)═(ax2+)eax,讨论ax2+的符号,即可研究函数的单调性.
点评:本题考查利用导数研究函数的单调性,考查利用导数研究曲线上某点切线方程,讨论ax2+的符号是关键,也是难点,考查综合分析与运算的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)已知函数

   (I)当a=18时,求函数的单调区间;(II)求函数在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数

(Ⅰ)当a=3时,求fx)的零点;

(Ⅱ)求函数yf (x)在区间 [ 1,2 ] 上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

www.ks5u.co

已知函数

   (I)当a<0时,求函数的单调区间;

   (II)若函数f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省唐山市高三下学期第二次模拟考试数学理卷 题型:解答题

(本小题满分12分)

已知函数

   (I)当a=1时,求的最小值;

   (II)求证:在区间(0,1)单调递减。

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知函数

(1)当a=-1时,求函数f(x)的单调区间;

(2)若函数的图象与直线y=ax只有一个公共点,求实数b的取值范围。

 

查看答案和解析>>

同步练习册答案