精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)当a=3时,求fx)的零点;

(Ⅱ)求函数yf (x)在区间 [ 1,2 ] 上的最小值.


解析:

(Ⅰ) 由题意,

,解得 或;                                        --- 4分

(Ⅱ) 设此最小值为,而

(1)当时,

是区间[1,2]上的增函数, 所以;                    --- 3分

(2)当时,

时,

时,       --- 3分

① 当,即时,;

② 当,即时,

③ 当时,.

综上所述,所求函数的最小值.- 5分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a+log2x(当x≥2时)
x2-4
x-2
(当x<2时)
在点x=2处
连续,则常数a的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x•2x,当f'(x)=0时,x=
-
1
ln2
-
1
ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2,当x=1时,有极大值3
(1)求函数的解析式
(2)写出它的单调区间
(3)求此函数在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=cosx+x,当x∈[-
π
2
π
2
]
时,该函数的值域是
[-
π
2
π
2
]
[-
π
2
π
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a+log2x(当x≥2时)
x2-4
x-2
(当x<2时)
在点x=2处
连续,则常数a的值是
3
3

查看答案和解析>>

同步练习册答案