【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.
【答案】
(1)解:如图,以DA,DC,DD1为x,y,z轴,建立空间直角坐标系,
则A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)
,
,
,
∵ ,
,
∴ ,
,
∴A1C⊥平面BED
(2)解:∵ ,
,
设平面A1DE的法向量为 ,
由 及
,
得﹣2x+2y﹣3z=0,﹣2x﹣4z=0,
取
同理得平面BDE的法向量为 ,
∴cos< >=
=
=﹣
,
所以二面角A1﹣DE﹣B的余弦值为 .
【解析】(1)以DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则 ,
,
,由向量法能证明A1C⊥平面BED.(2)由
,
,得到平面A1DE的法向量
,同理得平面BDE的法向量为
,由向量法能求出二面角A1﹣DE﹣B的余弦值.
科目:高中数学 来源: 题型:
【题目】某钢厂打算租用,
两种型号的火车车皮运输900吨钢材,
,
两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且
型车皮不多于
型车皮7个,分别用
,
表示租用
,
两种车皮的个数.
(1)用,
列出满足条件的数学关系式,并画出相应的平面区域;
(2)分别租用,
两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f(
)>f(π),则f(x)的单调递增区间是( )
A.[kπ﹣ ,kπ+
](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+
](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则关于函数y=f(x),下列说法正确的是( )
A.在x=﹣1处取得极大值
B.在区间[﹣1,4]上是增函数
C.在x=1处取得极大值
D.在区间[1,+∞)上是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c在x=﹣ 与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)若对x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面
是菱形,
平面
,
是棱
上的一个动点.
(Ⅰ)若为
的中点,求证:
平面
;
(Ⅱ)求证:平面平面
;
(Ⅲ)若三棱锥的体积是四棱锥
体积的
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的前n项和为Sn , 已知对任意的n∈N+ , 点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(1)求r的值.
(2)当b=2时,记bn=2(log2an+1)(n∈N+),证明:对任意的n∈N+,不等式成立 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com