【题目】如图,在四棱锥中,底面是菱形, 平面, 是棱上的一个动点.
(Ⅰ)若为的中点,求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若三棱锥的体积是四棱锥体积的,求的值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期为2 π,最小值为﹣2,且当x= 时,函数取得最大值4. (Ⅰ)求函数 f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)若当x∈[ , ]时,方程f(x)=m+1有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数图象上不同两点, 处切线的斜率分别是, ,规定(为线段的长度)叫做曲线在点与之间的“弯曲度”,给出以下命题:
①函数图象上两点与的横坐标分别为1和2,则;
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点, 是抛物线上不同的两点,则;
④设曲线(是自然对数的底数)上不同两点, ,且,若恒成立,则实数的取值范围是.
其中真命题的序号为__________.(将所有真命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市有一块半径为40m的半圆形(以O为圆心,AB为直径)绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.
(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)=x3﹣3x2 , 给出下列四个命题: ①f(x)是增函数,无极值;
②f(x)是减函数,有极值;
③f(x)在区间(﹣∞,0]及[2,+∞)上是增函数;
④f(x)有极大值为0,极小值﹣4;
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,D是AC的中点,EF∥DB.
(1)已知AB=BC,AF=CF,求证:AC⊥平面BEF;
(2)已知G、H分别是EC和FB的中点,求证:GH∥平面ABC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com