精英家教网 > 高中数学 > 题目详情
在△ABC中,已知cosA=
3
5
,求sin2A.
考点:二倍角的正弦
专题:三角函数的求值
分析:由题意可得A为锐角,利用同角三角函数的基本关系求出sinA的值,再利用二倍角的正弦公式求得sin2A的值.
解答: 解:在△ABC中,∵已知cosA=
3
5
,∴A为锐角,sinA=
1-cos2A
=
4
5

∴sin2A=2sinAcosA=
24
25
点评:本题主要考查同角三角函数的基本关系,二倍角的正弦公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

现有3名男生,4名女生排成一行.
(1)若男生必须排在一起,有多少种排法?
(2)若男生、女生各不相邻,有多少种排法?
(3)若甲在乙的左边,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin2x+2sinxcosx+3cos2x,x∈R,
(1)求f(x)周期;
(2)求f(x)的最大值及取得最大值时x的集合;
(3)求f(x)在[0,
π
4
]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且角C=
π
3
,a+b=λc其中λ>1.
(1)若c=λ=2,求角B的值;
(2)若
AC
BC
=
1
6
(λ4+3),求边长c的最小值并判定此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-(x+2)(x-m)(其中m>-2).g(x)=2x-2.
(Ⅰ)若命题“log2g(x)≥1”是假命题,求x的取值范围;
(Ⅱ)设命题p:?x∈R,f(x)<0或g(x)<0;命题q:?x∈(-1,0),f(x)g(x)<0.若p∧q是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,DE=2AB=2,AE与平面ACD所成角为
π
4
,F在线段CD上,且FD=2CF.
(Ⅰ)试判断直线AF与平面BCE的位置关系,并加以证明;
(Ⅱ)求多面体ABEDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
2
x+y+
3
=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知圆M:x2+y2=
2
3
的切线l与椭圆相交于A、B两点,求证:以AB为直径的圆过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2x-3y)4展开式中所有二项式系数的和为
 
,所有系数的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x∈R|3x+2>0},N={x∈R|(x+1)(x-3)≤0},则M∩N=
 

查看答案和解析>>

同步练习册答案