精英家教网 > 高中数学 > 题目详情
10.设函数f(x+1)=x2+2x,则f(x)的单调递减区间是(-∞,0).

分析 先求出函数f(x)的表达式,得到函数的对称轴,从而求出函数的递减区间即可.

解答 解:∵f(x+1)=x2+2x=(x+1)2-1,
∴f(x)=x2-1,对称轴x=0,开口向上,
∴函数的递减区间是(-∞,0),
故答案为:(-∞,0).

点评 本题考查了二次函数的性质,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知 A(-2,3)、B(4,-3)两点,则线段AB的中点坐标是(  )
A.(3,0)B.(2,3)C.(3,3)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,为偶函数的是(  )
A.y=x+1B.y=$\frac{1}{x}$C.y=x4D.y=x5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定积分 $\int_{\;1}^{\;2}{4xdx}$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=x${\;}^{{m}^{2}-m-2}$(m∈N*)的图象与坐标轴无交点,则m的值是1,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}的前n项和为Sn,满足a1=tanα,(0<α<$\frac{π}{2}$,α≠$\frac{π}{6}$),an+1=$\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}$(n∈N*)关于下列命题:
①若α=$\frac{π}{3}$,则a3=0;
②对任意满足条件的角α,均有an+3=an(n∈N*
③存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3n=0
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,S3n<0
其中正确的命题有(  )
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-3x2-f′(0)x+c(c∈R),其中 f′(0)为函数f(x)在x=0处的导数.
(Ⅰ)求函数f(x)的递减区间;
(Ⅱ)若函数f(x)的图象关于($\frac{1}{2}$,0)对称,求实数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,ABCD-A′B′C′D′是棱长为1的正方体,点P是BC′上的动点,$\overrightarrow{BP}=λ\overrightarrow{BC'}$,则$\overrightarrow{AP}•\overrightarrow{DC}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)<0,试求不等式  f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x),x∈[1,+∞)的最小值为-2,求m的值.

查看答案和解析>>

同步练习册答案