| A. | 1 个 | B. | 2 个 | C. | 3 个 | D. | 4 个 |
分析 ①由a1=$tan\frac{π}{3}$=$\sqrt{3}$,可得a2=$\frac{\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×\sqrt{3}}$=-$\sqrt{3}$,a3=0,即可判断出正误;
②对任意的a1(a1≠),an+2=$\frac{{a}_{n+1}+\sqrt{3}}{1-\sqrt{3}{a}_{n+1}}$=$\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}$,an+3=$\frac{\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}}$=an,即可判断出正误;
③由②的周期性可知:只要证明存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3=0即可.a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.可得S3=a1+a2+a3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$,取$α=\frac{π}{3}$,可得S3=0,即可判断出正误.
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,$\frac{\sqrt{3}}{3}<tanα<\sqrt{3}$.由②的周期性可知:只要证明S3<0即可,S3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$<0,即可判断出正误.
解答 解:①∵a1=$tan\frac{π}{3}$=$\sqrt{3}$,∴a2=$\frac{\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×\sqrt{3}}$=-$\sqrt{3}$,∴a3=$\frac{-\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×(-\sqrt{3})}$=0,因此正确;
②对任意的a1(a1≠),an+2=$\frac{{a}_{n+1}+\sqrt{3}}{1-\sqrt{3}{a}_{n+1}}$=$\frac{\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}}$=$\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}$,an+3=$\frac{\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}}$=an,∴an+3=an,正确;
③由②的周期性可知:只要证明存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3=0即可.a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.S3=a1+a2+a3=tanα+$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$+$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$,取$α=\frac{π}{3}$,可得S3=0,因此正确.
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,$\frac{\sqrt{3}}{3}<tanα<\sqrt{3}$.由②的周期性可知:只要证明S3<0即可,a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.S3=a1+a2+a3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$<0,因此正确.
综上可得:①②③④都正确.
故选:D.
点评 本题考查了正切和差公式、数列递推关系、数列的周期性与单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com