精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的前n项和为Sn,满足a1=tanα,(0<α<$\frac{π}{2}$,α≠$\frac{π}{6}$),an+1=$\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}$(n∈N*)关于下列命题:
①若α=$\frac{π}{3}$,则a3=0;
②对任意满足条件的角α,均有an+3=an(n∈N*
③存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3n=0
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,S3n<0
其中正确的命题有(  )
A.1 个B.2 个C.3 个D.4 个

分析 ①由a1=$tan\frac{π}{3}$=$\sqrt{3}$,可得a2=$\frac{\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×\sqrt{3}}$=-$\sqrt{3}$,a3=0,即可判断出正误;
②对任意的a1(a1≠),an+2=$\frac{{a}_{n+1}+\sqrt{3}}{1-\sqrt{3}{a}_{n+1}}$=$\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}$,an+3=$\frac{\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}}$=an,即可判断出正误;
③由②的周期性可知:只要证明存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3=0即可.a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.可得S3=a1+a2+a3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$,取$α=\frac{π}{3}$,可得S3=0,即可判断出正误.
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,$\frac{\sqrt{3}}{3}<tanα<\sqrt{3}$.由②的周期性可知:只要证明S3<0即可,S3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$<0,即可判断出正误.

解答 解:①∵a1=$tan\frac{π}{3}$=$\sqrt{3}$,∴a2=$\frac{\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×\sqrt{3}}$=-$\sqrt{3}$,∴a3=$\frac{-\sqrt{3}+\sqrt{3}}{1-\sqrt{3}×(-\sqrt{3})}$=0,因此正确;
②对任意的a1(a1≠),an+2=$\frac{{a}_{n+1}+\sqrt{3}}{1-\sqrt{3}{a}_{n+1}}$=$\frac{\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}}$=$\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}$,an+3=$\frac{\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}+\sqrt{3}}{1-\sqrt{3}×\frac{{a}_{n}-\sqrt{3}}{1+\sqrt{3}{a}_{n}}}$=an,∴an+3=an,正确;
③由②的周期性可知:只要证明存在α0∈(0,$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$),使得S3=0即可.a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.S3=a1+a2+a3=tanα+$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$+$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$,取$α=\frac{π}{3}$,可得S3=0,因此正确.
④当$\frac{π}{6}$<α<$\frac{π}{3}$时,$\frac{\sqrt{3}}{3}<tanα<\sqrt{3}$.由②的周期性可知:只要证明S3<0即可,a2=$\frac{tanα+\sqrt{3}}{1-\sqrt{3}tanα}$,a3=$\frac{tanα-\sqrt{3}}{1+\sqrt{3}tanα}$.S3=a1+a2+a3=$\frac{3tanα(3-ta{n}^{2}α)}{1-3ta{n}^{2}α}$<0,因此正确.
综上可得:①②③④都正确.
故选:D.

点评 本题考查了正切和差公式、数列递推关系、数列的周期性与单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求斜率为3,且和圆x2+y2=4相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列各式的值(不使用计算器):
(1)${8^{\frac{2}{3}}}+{(-\frac{1}{3})^0}-{({\frac{2}{3}})^{-1}}-\sqrt{6\frac{1}{4}}$;
(2)lg2+lg5-log21+log39.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知U=[0,1],A=(0,1],则∁UA={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x+1)=x2+2x,则f(x)的单调递减区间是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a=π0.5,b=log32,$c=cos\frac{5π}{6}$,则a,b,c从大到小的顺序为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(文科答)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a为常数,记函数$f(x)=k{(\frac{x-1}{x+1})^2}$,x>1的反函数为f-1(x).已知y=f-1(x)的图象经过点$(\frac{1}{4},3)$.
(Ⅰ)求实数k的值和反函数f-1(x)的解析式;
(Ⅱ)定义函数$F(x)={log_c}[{f^{-1}}(x)]-{log_c}\frac{{c-\sqrt{x}}}{{1-\sqrt{x}}}$,其中常数c>0且c≠1,求函数F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从6名女同学和4名同学中选出4名组建小组,按下列条件,分别求选法种数.
(1)甲必须参加;
(2)甲必须参加,而乙不参加;
(3)甲、乙至少有一人参加;
(4)甲、乙至多有一人参加;
(5)至少有两名女同学;
(6)担任不同的职务;
(7)甲担任组长,其余3人担任不同的职务.

查看答案和解析>>

同步练习册答案