精英家教网 > 高中数学 > 题目详情
1.已知$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$分别在下列条件下求α+2β的值:
(1)$α∈({0,\frac{π}{2}}),β∈({0,\frac{π}{2}})$
(2)$α∈({-π,0}),β∈({0,\frac{π}{2}})$.

分析 由条件求得α、β的范围,可得α+2β的范围,再求得tanβ、tan2β、tan(α+2β)的值,从而求得α+2β的值.

解答 解:(1)∵$α∈({0,\frac{π}{2}}),β∈({0,\frac{π}{2}})$,且$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$,∴α∈( 0,$\frac{π}{4}$)、β∈(0,$\frac{π}{6}$),
∴α+2β∈(0,$\frac{7π}{12}$),且cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{3\sqrt{10}}{10}$,∴tanβ=$\frac{1}{3}$,tan(2β)=$\frac{2tanβ}{1{-tan}^{2}β}$=$\frac{3}{4}$,
∴tan(α+2β)=$\frac{tanα+tan2β}{1-tanα•tan2β}$=$\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7}•\frac{3}{4}}$=1,∴α+2β=$\frac{π}{4}$.
(2)∵$α∈({-π,0}),β∈({0,\frac{π}{2}})$,且$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$,∴α∈(-π,-$\frac{5π}{6}$)、β∈(0,$\frac{π}{6}$),
∴α+2β∈(-π,-$\frac{π}{2}$),且cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{3\sqrt{10}}{10}$,∴tanβ=$\frac{1}{3}$,tan(2β)=$\frac{2tanβ}{1{-tan}^{2}β}$=$\frac{3}{4}$,
∴tan(α+2β)=$\frac{tanα+tan2β}{1-tanα•tan2β}$=$\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7}•\frac{3}{4}}$=1,∴α+2β=-$\frac{3π}{4}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式,两角和差的三角公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在边长为1的正方形ABCD中,向量$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{BF}$=$\frac{1}{3}$$\overrightarrow{BC}$,则向量$\overrightarrow{AE}$,$\overrightarrow{AF}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个算法的框图如右图所示,若该程序输出的结果为$\frac{5}{6}$,则判断框中应填入的条件是(  )
A.i<6B.i≤6C.i<5D.i≤7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于实数a,b,c,d,规定一种运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,如$|\begin{array}{l}{1}&{0}\\{2}&{(-2)}\end{array}|$=1×(-2)-0×2=-2,那么当$|\begin{array}{l}{(x+1)}&{(x+2)}\\{(x-3)}&{(x-1)}\end{array}|$=27时,x=22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{\begin{array}{l}\sqrt{x},x≥1\\ \frac{1}{x},0<x<1\\{2^x},x<0\end{array}\right.$,则f[f(-2)]=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$y=\frac{-cosx}{ln|x|}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.幂函数$f(x)={x^{\frac{1}{5}}}$,若0<x1<x2,则$f({\frac{{{x_1}+{x_2}}}{2}})$,$\frac{{f({x_1})+f({x_2})}}{2}$大小关系是(  )
A.$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$B.$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$
C.$f({\frac{{{x_1}+{x_2}}}{2}})=\frac{{f({x_1})+f({x_2})}}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数y=f(x)对任意的x,y∈R,恒有f(x+y)=f(x)+f(y).当x>0时,恒有f(x)<0
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)判断函数f(x)的单调性,并证明你的结论;
(3)若f(2)=1,解不等式f(-x2)+2f(x)+4≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

同步练习册答案