精英家教网 > 高中数学 > 题目详情
已知直线l1:x+y-3=0,l2:x-y-1=0.
(Ⅰ)求过直线l1与l2的交点,且垂直于直线l3:2x+y-1=0的直线方程;
(Ⅱ)过原点O有一条直线,它夹在l1与l2两条直线之间的线段恰被点O平分,求这条直线的方程.
分析:(I)先求出直线的交点,然后根据垂直,斜率之积为-1,求出所求直线方程的斜率,即可求出直线方程;
(II)当斜率不存在时,不合题意;当斜率存在时,设所求的直线方程为y=kx,进而得出交点,从而知
3
k+1
+
1
1-k
=0
,求出k的值.
解答:解:(Ⅰ)由
x+y-3=0
x-y-1=0
x=2.
y=1

∵所求的直线垂直于直线l3:2x+y-1=0,∴所求直线的斜率为
1
2

∴所求直线的方程为x-2y=0.
(Ⅱ)如果所求直线斜率不存在,则此直线方程为x=0,不合题意.
所以设所求的直线方程为y=kx.
所以它与l1,l2的交点分别为(
3
k+1
3k
k+1
),(
1
1-k
k
1-k
)

由题意,得
3
k+1
+
1
1-k
=0

解得k=2.
所以所求的直线方程为2x-y=0.
点评:此题考查了两直线垂直的条件,交点坐标的求法等知识,有一定的综合性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:x+y-2=0和l2:x-7y-4=0,过原点O的直线与L1、L2分别交A、B两点,若O是线段AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x-y+1=0和直线l2:2x+y+2=0的交点为P.
(1)求交点P的坐标;
(2)求过点P且与直线2x-3y-1=0平行的直线l3的方程;
(3)若过点P的直线l4被圆C:x2+y2-4x+4y-17=0截得的弦长为8,求直线l4的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+y+1=0,l2:2x+2y-1=0,则l1,l2之间的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x-y+C1=0,C1=
2
,l2:x-y+C2=0,l3:x-y+C3=0,…,ln:x-y+Cn=0(其中C1<C2<C3<…<Cn),当n≥2时,直线ln-1与ln间的距离为n.
(1)求Cn
(2)求直线ln-1:x-y+Cn-1=0与直线ln:x-y+Cn=0及x轴、y轴围成图形的面积.

查看答案和解析>>

同步练习册答案