精英家教网 > 高中数学 > 题目详情
已知关于x的一元二次方程x2+2ax+b2=0,
(1)若a是从0,1,2三个数中任取的一个数,b是从0,1,2,3四个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,2]中任取的一个数,b是从区间[0,3]中任取的一个数,求上述方程无实根的概率.
解:(1)设事件A为“方程x2+2ax+b2=0有实根”,
当a≥0,b≥0时,方程x2+2ax+b2=0有实根等价于a≥b,
基本事件共有12个:(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),
其中第一个数表示a的取值,第二个数表示b的取值,
事件A包含6个基本事件,
所以事件A发生的概率为
(2)设事件B为“方程x2+2ax+b2=0无实根”,
当a≥0,b≥0时,方程x2+2ax+b2=0无实根等价于a<b,
由题知:试验全部结果所构成的区域为{(a,b)| 0≤a≤2,0≤b≤3},
故构成事件B的区域为{(a,b)|0≤a≤2,0≤b≤3,a<b}(如下图阴影部分),

故所求事件B的概率为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒.当你到达路口时,求不是红灯的概率.
(2)已知关于x的一元二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(Ⅰ)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[|m+n|2上是增函数的概率;
(Ⅱ)设点(
1
2
|m+n|min=
2
2
)是区域
x+y-8≤0
x>0
y>0
内的随机点,求MD上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式cx+b
x
+a<0的解集为
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知关于x的一元二次不等式ax2+bx+c≥0在实数集上恒成立,且a<b,则T=
a+b+cb-a
的最小值为
3
3

查看答案和解析>>

同步练习册答案