精英家教网 > 高中数学 > 题目详情
如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离.
考点:点、线、面间的距离计算,空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:(1)由已知得PE⊥BC,AE⊥BC,从而BC⊥平面APE,由此能证明BC⊥PA.
(2)设点C到平面PAB的距离为h,由VP-ABC=VC-PAB,利用等积法能求出点C到平面PAB的距离.
解答: (1)证明:E为BC的中点,
又P-ABC为正三棱锥,
PE⊥BC,AE⊥BC,又PE∩AE=E,
∴BC⊥平面APE,又AP?平面APE,
∴BC⊥PA.
(2)解:设点C到平面PAB的距离为h.
PO=
9-(
2
3
3
)2
=
69
3
,…(10分)
∵VP-ABC=VC-PAB
∴h=
S△ABC•PO
S△PAB
=
46
4
.…(12分)
点评:本题考查异面直线的证明,考查点到平面的距离的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,已知∠ACB=90°,AC=BC=1,BB1=2,M,N分别是B1C1和AB的中点.
(1)求MN与底面ABC所成角的余弦值;
(2)求点A1到平面AB1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
810+410
84+411

(2)计算:
(log25)2-4log25+4
+log2
1
5

(3)若函数y=log2(ax2+2x+1)的值域为R,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且
3
bsinA=acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=
3
,a=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为
2
3
,徒弟加工一个零件是精品的概率为
1
2
,师徒二人各加工2个零件.
(1)求徒弟加工该零件的精品数多于师傅的概率.
(2)设师徒二人加工出的4个零件中精品个数为ξ,求ξ的分布列与期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为
3
2
,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)讨论函数f(x)的零点个数问题
(3)当x>y>e-1时,证明不等式exln(1+y)>eyln(1+x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a1=2,且an+1=3an-2,求a4=
 

查看答案和解析>>

同步练习册答案