精英家教网 > 高中数学 > 题目详情
已知f(x)=x|x-a|-2.
(1)当a=0时,求函数y=f(x)+1的零点;
(2)若a>0,求f(x)的单调区间;
(3)若当x∈[0,1]时,恒有f(x)<0,求实数a的取值范围.
(1)当a=0时,y=f(x)+1=f(x)=x|x|-2+1,
当x≥0?x2=1?x=1或x=-1(负舍),
当x<0?x2=-1不成立,
故y=f(x)+1的零点为  1
(2)f(x)=x|x-a|-2=
x2-ax-2=(x-
a
2
)2-2-
a2
4
,x>a
-x2+ax-2=-(x=
a
2
)2-2+
a2
4
,x≤a.
当a>0,f(x)单调递增区间(-∞,
a
2
)
和(a,+∞),单调递减区间[
a
2
,a]

(3)(i)当x=0时,显然f(x)<0成立;
(ii)当x∈(0,1]时,由f(x)<0,可得x-
2
x
<a<x+
2
x

g(x)=x-
2
x
(x∈(0,1]),h(x)=x+
2
x
(x∈(0,1])
,则有[g(x)]max<a<[h(x)]min.由g(x)单调递增,可知[g(x)]miax=g(1)=-1.又h(x)=x+
2
x
=(
2
x
-
x
)2+2(x∈(0,1])
是单调减函数,故[h(x)]min=h(1)=3,故所求a的取值范围是(-1,3).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知f(x)=x|x-a|+b,x∈R.
(1)当a=1,b=0时,判断f(x)的奇偶性,并说明理由;
(2)当a=1,b=1时,若f(2x)=
54
,求x的值;
(3)若b<0,且对任何x∈[0,1]不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x|x-a|-2.
(1)若f(1)≤1,求a的取值范围;
(2)若a>0,求f(x)的单调区间;
(3)若当x∈[0,1]时,恒有f(x)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案