精英家教网 > 高中数学 > 题目详情
选做题.(本题满分10分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.)
选修4—1:平面几何
如图,Δ是内接于⊙O直线切⊙O于点相交于点.

(1)求证:Δ≌Δ
(2)若,求
解:(Ⅰ)在ΔABE和ΔACD中,
  ∠ABE=∠ACD………………2分
又,∠BAE=∠EDC
∵BD//MN   
∴∠EDC=∠DCN
∵直线是圆的切线,
∴∠DCN=∠CAD
∴∠BAE=∠CAD
∴ΔΔ(角、边、角)……………………………5分
(Ⅱ)∵∠EBC=∠BCM ∠BCM=∠BDC
∴∠EBC=∠BDC=∠BAC  BC=CD=4
又  ∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB  
∴    BC="BE=4   " ……………………………8分
设AE=,易证 ΔABE∽ΔDEC

又 
……………………………10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在△ABC中,边的中点,的延长线于,则下面结论中正确的是(   )
A.△AED∽△ACBB.△AEB∽△ACD
C.△BAE∽△ACED.△AEC∽△DAC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图:正方体ABCD—A1B1C1D1中,E、F、G、H、K、L分别为AB、BB1、B1C1、C1D1、D1D、DA的中点,则六边形EFGHKL在正方体面上的射影可能是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4—1:几何证明选讲
如图,AB是⊙O的直径,弦BDCA的延长线相交于
EEF垂直BA的延长线于点F. 求证: 
(Ⅰ)
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A. 选修4-1:几何证明选讲
已知点在圆直径的延长线上,切圆点, 的平分线分别交于点.
(1)求的度数;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4—1:几何证明选讲

如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CDAP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.
(1)求证:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,E是   ABCD边BC上一点,=4,AE交BD于F,
=(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(几何证明选讲选做题)已知G是△ABC的重心,AG交BC于E,BG交AC于F,△EFG的面积为1,则△EFC的面积为     

查看答案和解析>>

同步练习册答案