精英家教网 > 高中数学 > 题目详情
8.在直角坐标系xOy中,已知点A(2,0),B(1,1),C(-1,2),点P(x,y)在四边形OABC的四边围成的区域内(含边界),则z=x-2y的最大值是(  )
A.5B.-5C.2D.4

分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=x-2y,得y=$\frac{1}{2}x-\frac{z}{2}$,
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$经过点A(2,0)时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,
此时z最大,此时zmax=2-2×0=2.
故选:C.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=2,f(-$\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a∈R,a2-1+(a+1)i是纯虚数,其中i是虚数单位,则a=(  )
A.±1B.-1C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}为等差数列,满足$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一条直线上,O为直线AB外一点,记数列{an}的前n项和为Sn,则S2015的值为(  )
A.$\frac{2015}{2}$B.2015C.2016D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输入n的值为2,则输出的结果是(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{i^8}{1-i}$(其中i为虚数单位),则复数z的共轭复数$\overline z$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x,y满足约束条件$\left\{{\begin{array}{l}{\sqrt{3}x-y+\sqrt{3}≥0}\\{\sqrt{3}x+y-\sqrt{3}≤0}\\{y≥0}\end{array}}\right.$,则当$\frac{y+1}{x+3}$取最大值时,x+y的值为(  )
A.-1B.1C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17. 如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,点E是SB的中点,∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD为等边三角形.
(Ⅰ)求证:SD∥平面ACE;
(Ⅱ)求三棱锥S-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=a$\sqrt{x+1}$+$\frac{1}{x}$的极大值点x0∈(-1,-$\frac{1}{2}$),则实数a的取值范围为(  )
A.(0,4$\sqrt{2}$)B.(1,4)C.(-∞,4$\sqrt{2}$)D.($\sqrt{2}$,4)

查看答案和解析>>

同步练习册答案