精英家教网 > 高中数学 > 题目详情
2.函数f(x)=a$\sqrt{x+1}$+$\frac{1}{x}$的极大值点x0∈(-1,-$\frac{1}{2}$),则实数a的取值范围为(  )
A.(0,4$\sqrt{2}$)B.(1,4)C.(-∞,4$\sqrt{2}$)D.($\sqrt{2}$,4)

分析 求导数,分离参数,再求导数,确定函数值的范围,即可求出实数a的取值范围.

解答 解:∵函数f(x)=a$\sqrt{x+1}$+$\frac{1}{x}$,
∴f′(x)=$\frac{a}{2\sqrt{x+1}}$-$\frac{1}{{x}^{2}}$=0,
∴a=$\frac{2\sqrt{x+1}}{{x}^{2}}$,
∴a′=$\frac{-x(3x+4)}{\sqrt{x+1}}$•$\frac{1}{{x}^{4}}$,
∵x∈(-1,-$\frac{1}{2}$),
∴a′>0,
∴函数单调递增,
∴0<a<4$\sqrt{2}$.
故选:A.

点评 本题考查了导数的综合应用,考查函数的极值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在直角坐标系xOy中,已知点A(2,0),B(1,1),C(-1,2),点P(x,y)在四边形OABC的四边围成的区域内(含边界),则z=x-2y的最大值是(  )
A.5B.-5C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在⊙O的直径AB的延长线上取点P,作⊙O的切线PN,N为切点,在AB上找一点M,使PN=PM,连接NM并延长交⊙O于点C.
(1)求证:OC⊥AB;
(2)若⊙O的半径为$2\sqrt{3}$,OM=MP,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=a|x-2|+x.
(1)若函数f(x)有最大值,求a的取值范围;
(2)若a=1,求不等式f(x)<|2x-3|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.
(Ⅰ)证明:BE=DE;
(Ⅱ)若AD=3AC,求AE:AC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,AC为⊙O的直径,E为BC的中点,延长OE与⊙O相交于点D,连结AD,DC,F为BC与AD的交点.
(Ⅰ)求证:AB•DC=AD•BF
(Ⅱ)若AD=$\sqrt{3}$CD=$\sqrt{3}$,求OF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+mx2+nx+p在x=-$\frac{2}{3}$和x=1处都取得极值.
(1)求函数f(x)的单调区间;
(2)若对任意的x∈[-2,2],有f(x)≥-p2-ap-6恒成立,其中a∈[-1,1].求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,A、B、C、D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若EF2=FA•FB,证明:EF∥CD;
(2)若BD平分∠ABC,AE=2AB,求证:EC=2AD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的两个焦点及短轴的两个端点为四个顶点的椭圆方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{9}+\frac{y^2}{16}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{16}+\frac{y^2}{25}=1$

查看答案和解析>>

同步练习册答案