精英家教网 > 高中数学 > 题目详情

(本小题12分)

如图,抛物线的焦点到准线的距离与椭圆的长半轴相等,设椭圆的右顶点为在第一象限的交点为为坐标原点,且的面积为

(1)求椭圆的标准方程;

(2)过点作直线两点,射线分别交两点.

(I)求证:点在以为直径的圆的内部;

(II)记的面积分别为,问是否存在直线,使得?请说明理由.

 

【答案】

(1)

(2) (I)见解析;(II) 不存在直线使得

【解析】(I)由抛物线方程可知椭圆的长半轴长a=2,再由,从而可求出B的坐标,代入椭圆方程可求出b2,从而求出椭圆的方程.

(2)(I) 证明点在以为直径的圆的内部,需证

因为只需证明即证,然后直线方程与椭圆方程联立,借助韦达定理来解决即可.

解;(1),得椭圆的长半轴

.代入抛物线求得

椭圆方程为

(2)(I)设直线的方程为:,由

点在以为直径的圆的内部

(II),直线的斜率为

直线的方程为.由

,

不存在直线使得

 

练习册系列答案
相关习题

科目:高中数学 来源:浏阳一中、田中高三年级2009年下期期末联考试题 数学试题 题型:解答题

(本小题12分)

如图,曲线是以原点为中心,以为焦点的椭圆的一部分,曲线 是以为顶点,以为焦点的抛物线的一部分,是曲线的交点,且为钝角,若
(I)求曲线所在的椭圆和抛物线的方程;
(II)过作一条与轴不垂直的直线,分别与曲线依次交于四点(如图),若的中点,的中点,问是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011年新疆农七七师高级中学高二下学期第一学段考试理科数学 题型:解答题

(本小题12分)
如图,<…<)是曲线C上的n个点,点在x轴的正半轴上,且⊿是正三角形(是坐标原点)。

(1)写出
(2)求出点的横坐标关于n的表达式并用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省协作体高三第三次联考文科数学试卷(解析版) 题型:解答题

(本小题12分)如图,直三棱柱中, ,中点,若规定主视方向为垂直于平面的方向,则可求得三棱柱左视图的面积为

(Ⅰ)求证:

(Ⅱ)求三棱锥的体积。

 

查看答案和解析>>

科目:高中数学 来源:2011年四川省高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题12分)如图,B、A是某海面上位于东西方向相距海里的两个观测点。现位于B点正北方向、A点北偏东方向的C点有一艘轮船发出求救信号,位于B点北偏西、A点北偏西的D点的救援船立即前往营救,其航行速度为海里/小时.问该救援船到达C点需要多少时间?

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年福建省四地六校高二第二次月考文科数学 题型:解答题

(本小题12分)

如图4:求的算法的

程序框图。⑴标号①处填        。标号②处填        。⑵根据框图用直到型(UNTIL)语句编写程序。

 

 

查看答案和解析>>

同步练习册答案