精英家教网 > 高中数学 > 题目详情
2.若直线x+y-1=0和ax+2y+1=0互相平行,则两平行线之间的距离为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{2}}}{4}$

分析 直线x+y-1=0和ax+2y+1=0平行,可得a.再利用两条平行线间的距离公式即可得出.

解答 解:∵直线x+y-1=0和ax+2y+1=0平行,
∴a=2.
∴x+y-1=0化为:2x+2y-2=0,
∴这两条平行线间的距离=$\frac{|1+2|}{\sqrt{4+4}}$=$\frac{3\sqrt{2}}{4}$.
故选:D.

点评 本题考查了两条平行线间的距离公式、相互平行的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在三棱锥P-ABC中,PA⊥平面ABC,PA=2,AB=2,AC=1,∠BAC=60°,则该三棱锥的外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.D为△ABC的BC边上一点,$\overline{DC}=-2\overline{DB}$,过D点的直线分别交直线AB、AC于E、F,若$\overline{AE}=λ\overline{AB},\overline{AF}=μ\overline{AC}$,其中λ>0,μ>0,则$\frac{2}{λ}+\frac{1}{μ}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在区间(0,2)内任取两个数a,b,则使方程x2+(a2-2)x+b2=0的两个根分别作为椭圆与双曲线的离心率的概率为(  )
A.$\frac{1}{8}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在同一平面直角坐标系中经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲线C变为曲线2x′2+8y′2=0,则曲线C的方程为(  )
A.25x2+36y2=0B.9x2+100y2=0C.10x+24y=0D.$\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=2xf′(1)+x2,则f(-1)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-$\overrightarrow{b}$ (k∈R),且$\overrightarrow{c}$$⊥\overrightarrow{d}$,那么k=(  )
A.$\frac{8}{7}$B.2C.$\frac{4}{7}$D.$\frac{\sqrt{57}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a为实数,且$\frac{2+ai}{1+i}$=3+i,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=$\left\{\begin{array}{l}f(x)(x≥0)\\-f(x)(x<0)\end{array}$.
(1)f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在 (1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设b-2=2a,记F(x)在[0,1]上的最大值为G(a),求函数G(a)的最小值.

查看答案和解析>>

同步练习册答案