精英家教网 > 高中数学 > 题目详情
13.D为△ABC的BC边上一点,$\overline{DC}=-2\overline{DB}$,过D点的直线分别交直线AB、AC于E、F,若$\overline{AE}=λ\overline{AB},\overline{AF}=μ\overline{AC}$,其中λ>0,μ>0,则$\frac{2}{λ}+\frac{1}{μ}$=3.

分析 根据题意画出图形,结合图形利用平面向量的线性运算与共线定理,列出方程组求出λ与μ的表达式,即可求出$\frac{2}{λ}$+$\frac{1}{μ}$的值.

解答 解:如图所示,
∵$\overrightarrow{EB}$=$\overrightarrow{ED}$+$\overrightarrow{DB}$,$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=λ$\overrightarrow{AB}$,
∴$\overrightarrow{EB}$=(1-λ)$\overrightarrow{AB}$;
又E,D,F三点共线,
∴存在实数k,使$\overrightarrow{ED}$=k$\overrightarrow{EF}$=k($\overrightarrow{AF}$-$\overrightarrow{AE}$)=kμ$\overrightarrow{AC}$-kλ$\overrightarrow{AB}$;
又$\overrightarrow{DC}$=-2$\overrightarrow{DB}$,
∴$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$;
∴(1-λ)$\overrightarrow{AB}$=(kμ$\overrightarrow{AC}$-kλ$\overrightarrow{AB}$)-($\frac{1}{3}$$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$),
即(1-λ)$\overrightarrow{AB}$=(kμ-$\frac{1}{3}$)$\overrightarrow{AC}$+($\frac{1}{3}$-kλ)$\overrightarrow{AB}$,
∴$\left\{\begin{array}{l}{kμ-\frac{1}{3}=0}\\{1-λ=\frac{1}{3}-kλ}\end{array}\right.$,
解得μ=$\frac{1}{3k}$,λ=$\frac{2}{3(1-k)}$;
∴$\frac{2}{λ}$+$\frac{1}{μ}$=3(1-k)+3k=3.
故答案为:3.
故答案为:3.

点评 本题考查了平面向量的加法、减法运算,共线向量基本定理,以及平面向量基本定理,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{4x+y≥4}\\{x-2y+2≥0}\end{array}\right.$,则z=4x•($\frac{1}{2}$)y的最大值为(  )
A.1B.2${\;}^{\frac{4}{3}}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数x、y满足x2+y2-4x+3=0,则x2+y2-2y的最大值为5+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的右焦点为F,其右支上总有点P,使得|OM|=|PF|(M为PF的中点,O为坐标原点),则C的离心率的取值范围是(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinθ和cosθ为方程$2{x^2}-(\sqrt{3}+1)x+m=0$的两根,求
(1)$\frac{sinθ}{{1-\frac{1}{tanθ}}}+\frac{cosθ}{1-tanθ}$;
(2)m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{2}^{4}$$\frac{{x}^{3}-3{x}^{2}+5}{{x}^{2}}$dx的值为(  )
A.1B.$\frac{1}{4}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.向量$\overrightarrow a=({λ,1}),\overrightarrow b=({1,-1})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则λ的取值范围为(  )
A.λ<1B.λ≤1C.λ≥1D.λ>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线x+y-1=0和ax+2y+1=0互相平行,则两平行线之间的距离为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x与y之间的几组数据如表:则由表数据所得线性回归直线必过点(4.5,3.5).
x3456
y2.5344.5

查看答案和解析>>

同步练习册答案