| A. | 1 | B. | 2${\;}^{\frac{4}{3}}$ | C. | 4 | D. | 2 |
分析 z=4x•($\frac{1}{2}$)y=22x-y,设m=2x-y,作出不等式组对应的平面区域求出m的最大值即可.
解答
解:由z=4x•($\frac{1}{2}$)y=22x-y,设m=2x-y,得y=2x-m,作出不等式对应的可行域(阴影部分),
平移直线y=2x-m,由平移可知当直线y=2x-m,
经过点A时,直线y=2x-m的截距最小,此时m取得最大值,
由$\left\{\begin{array}{l}{x-y=0}\\{x-2y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2).
代入m=2x-y,得m=4-2=2,
即目标函数m=2x-y的最大值为2.
则z的最大值为22=4,
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义以及换元法,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3] | B. | [3,+∞) | C. | [9,+∞) | D. | [3,9] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<0} | B. | {x|x>1} | C. | {x|0≤x<1} | D. | {x|0<x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com