精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{4x+y≥4}\\{x-2y+2≥0}\end{array}\right.$,则z=4x•($\frac{1}{2}$)y的最大值为(  )
A.1B.2${\;}^{\frac{4}{3}}$C.4D.2

分析 z=4x•($\frac{1}{2}$)y=22x-y,设m=2x-y,作出不等式组对应的平面区域求出m的最大值即可.

解答 解:由z=4x•($\frac{1}{2}$)y=22x-y,设m=2x-y,得y=2x-m,作出不等式对应的可行域(阴影部分),
平移直线y=2x-m,由平移可知当直线y=2x-m,
经过点A时,直线y=2x-m的截距最小,此时m取得最大值,
由$\left\{\begin{array}{l}{x-y=0}\\{x-2y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2).
代入m=2x-y,得m=4-2=2,
即目标函数m=2x-y的最大值为2.
则z的最大值为22=4,
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义以及换元法,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC是半径为2的圆的内接三角形,内角A,B,C的对边分别为a、b、c,且2acosA=ccosB+bcosC.
(Ⅰ)求A;
(Ⅱ)若b2+c2=18,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知p:-2≤x≤10,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要条件,则a的取值范围是(  )
A.(0,3]B.[3,+∞)C.[9,+∞)D.[3,9]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正项等比数列{an}中,若a1,a4029是方程x2-10x+16=0的两根,则log2a2015的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,若集合A={x|3x>1},B={x|log3x>0},A∩∁UB=(  )
A.{x|x<0}B.{x|x>1}C.{x|0≤x<1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c(b<c).满足ccosB+bcosC=2acosA.
(1)求角A的大小;
(2)若△ABC的周长为20,面积为10$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,1),若$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则实数m等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在三棱锥P-ABC中,PA⊥平面ABC,PA=2,AB=2,AC=1,∠BAC=60°,则该三棱锥的外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.D为△ABC的BC边上一点,$\overline{DC}=-2\overline{DB}$,过D点的直线分别交直线AB、AC于E、F,若$\overline{AE}=λ\overline{AB},\overline{AF}=μ\overline{AC}$,其中λ>0,μ>0,则$\frac{2}{λ}+\frac{1}{μ}$=3.

查看答案和解析>>

同步练习册答案