精英家教网 > 高中数学 > 题目详情
已知函数f(x)=7
3
sinxcosx+7sin2x-
5
2
,x∈R.
(Ⅰ)若f(x)的单调区间(用开区间表示);
(Ⅱ)若f(
a
2
-
π
6
)=1+4
3
,f(
a
2
-
12
)=2,求sin(
a
2
-
π
3
)的值.
(Ⅰ)由题意得:函数f(x)=7
3
sinxcosx+7sin2x-
5
2
=
7
3
2
sin2x+7×
1-cos2x
2
-
5
2
 
=7(
3
2
sin2x-
1
2
cos2x)+1=7sin(2x-
π
6
)+1.
令 2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,可得 kπ-
π
6
≤x≤kπ+
π
3
,k∈z,
故函数的增区间为[kπ-
π
6
,kπ+
π
3
],k∈z.
令 2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
,k∈z,可得 kπ+
π
3
≤x≤kπ+
6
,k∈z,
故函数的减区间为[kπ+
π
3
≤x≤kπ+
6
],k∈z.
(Ⅱ)∵f(
a
2
-
π
6
)=1+4
3

∴7sin[2(
a
2
-
π
6
)-
π
6
]+1=7sin(a-
π
2
)+1=-7cosa+1=1+4
3

∴cosa=
-4
3
7

∵f(
a
2
-
12
)=2,∴7sin[2(
a
2
-
12
)-
π
6
]+1=7sin[a-π]+1=-7sina+1=2,
∴sina=-
1
7

故a为第三象限角,且 2kπ+π<a<2kπ+
4
,k∈z,故 kπ+
π
2
a
2
<kπ+
8
,k∈z.
故 
a
2
是第二或第四象限角.
当 
a
2
是第二象限角时,sin 
a
2
=
1-cosa
2
=
7+4
3
14
=
2+
3
14

cos 
a
2
=-
1+cosa
2
=-
7-4
3
14
=-
2-
3
14
. 
sin(
a
2
-
π
3
)=sin 
a
2
 cos
π
3
-cos
a
2
sin
π
3
=
2+
3
14
×
1
2
-( -
2-
3
14
)×
3
2
=
3
3
-1
2
14

当 
a
2
是第四象限角时,sin 
a
2
=-
1-cosa
2
=-
7+4
3
14
=-
2+
3
14

cos 
a
2
=
1+cosa
2
=
7-4
3
14
=
2-
3
14
. 
sin(
a
2
-
π
3
)=sin 
a
2
 cos
π
3
-cos
a
2
sin
π
3
=-
2+
3
14
×
1
2
-
2-
3
14
×
3
2
=
1-3
3
2
14
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为
-13

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知函数f(x)对一切x,y都有f(ab)=bf(a)+af(b)
(1)求f(0);
(2)求证:f(x)是奇函数;
(3)若F(x)=af(x)+bx5+cx3+2x2+dx+3,已知F(-5)=7,求F(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=7+ax-1的图象恒过点P,则P点的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2k-3)x+k2-7的零点分别是-1和-2
(1)求k的值;
(2)若x∈[-2,2],则f(x)<m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)=7+ax-1的图象恒过点P,则P点的坐标是


  1. A.
    (1,8)
  2. B.
    (1,7)
  3. C.
    (0,8)
  4. D.
    (8,0)

查看答案和解析>>

同步练习册答案