【题目】如图,在四棱锥
中,ABCD为矩形,
是以
为直角的等腰直角三角形,平面
平面ABCD.
![]()
(1)证明:平面
平面PBC;
(2)
为直线PC的中点,且
,求二面角
的正弦值.
【答案】(1)证明见详解;(2)
.
【解析】
(1)由ABCD为矩形,得
,再由面面垂直的性质可得
平面PAB,则
,结合
,由线面垂直的判定可得
平面PAD,进一步得到平面
平面PBC;
(2)取AB中点O,分别以OP,OB所在直线为x,y轴建立空间直角坐标系,分别求出平面MAD与平面MBD的一个法向量,由两法向量所成角的余弦值可得二面角
的余弦值,再由平方关系求得二面角
的正弦值.
(1)证明:![]()
为矩形,
,
平面
平面ABCD,平面
平面
,
平面PAB,则
,
又
,
,
平面PAD,而
平面PBC,
平面
平面PBC,即证.
(2)取AB中点O,分别以OP,OB所在直线为x,y轴建立空间直角坐标系,
![]()
由
,
是以
为直角的等腰直角三角形,
得:
,
,
,
,
![]()
,![]()
,![]()
.
设平面MAD的一个法向量为![]()
,
由
可得
,
取
,得![]()
;
设平面MBD的一个法向量为![]()
,
由
可得
,
取
,得![]()
.
.
设二面角
的平面角为
,
则
.
二面角
的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FB∥AE且FB=2EA.
![]()
(1)证明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,左、右焦点分别是
,椭圆
上短轴的一个端点与两个焦点构成的三角形的面积为
;
(1)求椭圆
的方程;
(2)过
作垂直于
轴的直线
交椭圆
于
两点(点
在第二象限),
是椭圆上位于直线
两侧的动点,若
,求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)在R上的图象是连续不断的一条曲线,且图象关于原点对称,其导函数为f'(x),当x>0时,x2f'(x)>﹣2xf(x)成立,若x∈R,e2xf(ex)﹣a2x2f(ax)>0恒成立,则a的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为零的等差数列
中,
,且
,
,
成等比数列,
(1)求数列
的通项公式;
(2)数列
满足
,数列
的前n项和为
,若不等式
对一切
恒成立,求
的取值范围.
(3)设数列
的前n项和为
,求证:对任意正整数n,都有
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称
蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的
蔬菜没有售完,则批发商将没售完的
蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把
蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天
蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.
![]()
(1)若某天该蔬菜批发商共购入6袋
蔬菜,有4袋
蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?
(2)以上述样本数据作为决策的依据.
(i)若今年
蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋
蔬菜,试估计该蔬菜批发商经销
蔬菜的总盈利值;
(ii)若明年该蔬菜批发商每天购进
蔬菜的袋数相同,试帮其设计明年的
蔬菜的进货方案,使其所获取的平均利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣6ρcosθ+5=0,曲线C2的参数方程为
(t为参数).
(1)求曲线C1的直角坐标方程,并说明是什么曲线?
(2)若曲线C1与C2相交于A、B两点,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
、点
及抛物线
.
(1)若直线
过点
及抛物线
上一点
,当
最大时求直线
的方程;
(2)
轴上是否存在点
,使得过点
的任一条直线与抛物线
交于点
,且点
到直线
的距离相等?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com