精英家教网 > 高中数学 > 题目详情
1.判断函数f(x)=|sinx|+cosx的奇偶性.

分析 根据函数的奇偶性的定义进行判断即可.

解答 解:∵f(x)=|sinx|+cosx,
∴f(-x)=|-sinx|+cos(-x)=|sinx|+cosx=f(x),
故函数f(x)是偶函数.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知四棱锥,它的底面是边长为2的正方形,其俯视图如图所示,侧视图为直角三角形,则该四棱锥的侧面中直角三角形的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:
甲图书馆
 借(还)书等待时间T1(分钟) 1 2 3 4 5
 频数1500 1000 500 500 1500 
乙图书馆
 借(还)书等待时间T2(分钟) 1 2 3 4 5
 频数 1000 500 2000 1250 250
以表中等待时间的学生人数的频率为概率.
(1)分别求在甲、乙两图书馆借书的平均等待时间;
(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线C2与椭圆C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1具有相同的焦点,则两条曲线相交四个交点形成四边形面积最大时双曲线C2的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2x+x+1,g(x)=log2x+x+1,h(x)=log2x-1的零点依次为a,b,c,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个均匀小正方体的6个面中,三个面上标以数字0,两个面上标以数字1,一个面上标以数字2,将这个小正方体抛掷1次,则向上的数字为2的概率为$\frac{1}{6}$;将这个小正方体抛掷2次,则向上的数字之积的数学期望是$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若$\overrightarrow a$、$\overrightarrow b$是两个不共线的非零向量,
(1)若$\overrightarrow a$与$\overrightarrow b$起点相同,则实数t为何值时,$\overrightarrow{a}$、t$\overrightarrow b$、$\frac{1}{3}$$(\overrightarrow a+\vec b)$三个向量的终点A,B,C在一直线上?
(2)若|$\overrightarrow a$|=|$\overrightarrow b$|,且$\overrightarrow a$与$\overrightarrow b$夹角为60°,则实数t为何值时,|$\overrightarrow a-t\overrightarrow b$|的值最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x+1)的图象关于y轴对称,且函数f(x)在(1,+∞)上单调,若数列{an}是公差不为0的等差数列,且f(a6)=f(a20),则{an}的前25项之和为(  )
A.0B.$\frac{25}{2}$C.25D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(n)=cos\frac{nπ}{4}({n∈{N^*}})$,则f(1)+f(2)+…+f(2015)的值为-1.

查看答案和解析>>

同步练习册答案