精英家教网 > 高中数学 > 题目详情

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按元/度收费,超过200度但不超过400度的部分按元/度收费,超过400度的部分按1.0元/度收费.

(Ⅰ)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占,求 的值;

(Ⅲ)在满足(Ⅱ)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.

【答案】(1);(2) ;(3)见解析.

【解析】试题分析: (1)根据题意分段表示出函数解析式;(2)将代入(1)中函数解析式可得,即,根据频率分布直方图可分别得到关于的方程,即可得;(3)取每段中点值作为代表的用电量,分别算出对应的费用值,对应得出每组电费的概率,即可得到的概率分布列,然后求出的期望.

试题解析:(1)当时,

当当时,

当当时, ,所以之间的函数解析式为

.

(2)由(1)可知,当时, ,则,结合频率分布直方图可知

,∴

(3)由题意可知可取50,150,250,350,450,550,

时, ,∴

时, ,∴

时, ,∴

时, ,∴

时, ,∴

时, ,∴

的概率分布列为

25

75

140

220

310

410

0.1

0.2

0.3

0.2

0.15

0.05

所以随机变量的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={x|﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的出现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生中按年级用分层抽样的方式随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)如表:

使用时间

人数

10

40

25

20

5

(Ⅰ)已知该校大一学生由2400人,求抽取的100名学生中大一学生人数;

(Ⅱ)作出这些数据的频率分布直方图;

(Ⅲ)估计该校大学生每周使用共享单车的平均时间(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在处的切线方程为.

(1)判断函数的单调性;

(2)已知,且,若对任意,任意 中恰有一个恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数,

(1)若函数的图象过点,且方程有且只有一个实根,求的表达式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=max{x2﹣ax+a,ax﹣a+1},其中max{x,y}= . (Ⅰ)若对任意x∈R,恒有f(x)=x2﹣ax+a,求实数a的值;
(Ⅱ)若a>1,求f(x)的最小值m(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域是R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣ (a∈R)
(1)判断函数f(x)的单调性并给出证明;
(2)若函数f(x)是奇函数,则f(x)≥ 当x∈[1,2]时恒成立,求m的最大值.

查看答案和解析>>

同步练习册答案