精英家教网 > 高中数学 > 题目详情
16.过点P(2,3)作直线l,使l与点A(-1,-2),B(7,4)的距离相等,这样的直线l存在吗?若存在,求出其方程;若不存在,请说明理由.

分析 当所求的直线和线段AB平行时,求出它的斜率为KAB 的值,再根据直线l过点P(2,3),利用点斜式求得它的方程;当所求直线经过线段AB的中点C时,再根据直线l过点P,可得直线l的方程,综合可得结论

解答 解:当所求的直线和线段AB平行时,它的斜率为KAB=$\frac{4+2}{7+1}$=$\frac{3}{4}$,
再根据直线l过点P(2,3),
利用点斜式求得它的方程为 y-3=$\frac{3}{4}$(x-2),即 3x-4y+6=0.
当所求直线经过线段AB的中点C(3,1)时,再根据直线l过点P(2,3),
可得直线的斜率为:$\frac{3-1}{2-3}$=-2,
利用点斜式求得它的方程为 y-3=-2(x-2),即 2x+y-7=0.
综上可得,要求的直线l的方程为3x-4y+6=0,或2x+y-7=0

点评 本题主要考查求直线的方程的方法,体现了分类讨论的数学思想,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow{b}$=(2sin(x+$\frac{π}{6}$),1),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,
(1)求f(x)的解析式以及最小正周期;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.向量|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=$\sqrt{2}$,且向量$\overrightarrow{OA}$与向量$\overrightarrow{OB}$的夹角为$\frac{2π}{3}$,向量$\overrightarrow{OC}$与向量$\overrightarrow{OA}$和向量$\overrightarrow{OB}$的夹角都为$\frac{π}{3}$,且$\overrightarrow{OC}$=$m\overrightarrow{OA}$$+n\overrightarrow{OB}$,则$\frac{m}{n}$的值为 (  )
A.1B.±1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,且α∈(0,$\frac{π}{2}$),则cosα=$\frac{3\sqrt{2}+\sqrt{3}}{6}$,cos(2$α-\frac{π}{6}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=loga(ax2-(3-a)x+2)在[0,1]上是增函数,则a的取值范围是($\frac{1}{2}$,1)∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知一次函数(x)满足f[f(x)]=x-4,试求函数y=$\left\{\begin{array}{l}{[f(x)]^{2},1≤x≤3}\\{f(x)+2,-1≤x<1}\end{array}\right.$的单调区间与值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=3x-3(1<x≤5)的值域是(  )
A.(0,+∞)B.(0,9)C.($\frac{1}{9}$,9)D.($\frac{1}{3}$,27)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数y=ax-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b必满足条件a>1,b≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算:${∫}_{0}^{1}$($\sqrt{2x-{x}^{2}}$-x)dx=$\frac{π-2}{4}$.

查看答案和解析>>

同步练习册答案