精英家教网 > 高中数学 > 题目详情

【题目】如图,直四棱柱的底面是菱形,EMN分别是的中点.

1)证明:平面

2)求点C到平面的距离.

【答案】1)见解析(2

【解析】

1)连结,利用三角形中位线的性质和线面平行的判定定理即可得证;

2)过C的垂线,垂足为H,利用线面垂直的判定定理和性质定理可证平面,即的长即为C到平面的距离,在中利用三角形面积相等求出即可.

1)证明:如图所示:连结,因为ME分别为的中点,

所以,且,又因为N的中点,所以.

由题设知,可得,故,即四边形为平行四边形,

所以,又平面平面,所以平面.

2)过C的垂线,垂足为H,由已知可得

所以平面,故,因为

所以平面,故的长即为C到平面的距离,

由已知可得,所以

,所以点C到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.

1)已知,利用上述性质,求函数的单调区间和值域;

2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBDAB=BD

1)证明:平面ACD⊥平面ABC

2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年9月第三个公休日是全国科普日.某校为迎接2019年全国科普日,组织了科普知识竞答活动,要求每位参赛选手从4生态环保题2智慧生活题中任选3道作答(每道题被选中的概率相等),设随机变量ξ表示某选手所选3道题中“智慧生活题”的个数.

(Ⅰ)求该选手恰好选中一道智慧生活题的概率;

(Ⅱ)求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3ax2x+1aR).

(1)当a2时,求曲线yfx)在点(1f 1))处的切线方程;

(2)当a0时,设gx)=fx+x

①求函数gx)的极值;

②若函数gx)在[12]上的最小值是﹣9,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)讨论函数在区间上的极值点的个数;

(2)已知对任意的恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面分别是线段的中点,

I)在棱上找一点,使得平面平面,请写出点的位置,并加以证明;

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)当时,证明: (其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:


喜爱打篮球

不喜爱打篮球

合计

男生


5


女生

10



合计



50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

1)请将上面的列联表补充完整;

2)是否在犯错误的概率不超过0.5%的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:


0.15

0.10

0.05

0.025

0.010

0.005]

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中)

查看答案和解析>>

同步练习册答案