分析 由题意可得,四边形ABCD为圆内接四边形.
(1)直接运用余弦定理求得BD的长;
(2)由正弦定理求得△ABD的外接圆半径R;
(3)在△ABC中,由正弦定理得AC的长.
解答 解:如图,![]()
由∠DAB=60°,∠BCD=120°,可知四边形ABCD为圆内接四边形,
(1)在△ABD中,由∠DAB=60°,AD=2,AB=5,利用余弦定理得:
BD2=AB2+AD2-2AB•AD•cos∠DAB=${5}^{2}+{2}^{2}-2×5×2×\frac{1}{2}=19$.
∴$BD=\sqrt{19}$;
(2)由正弦定理得:$\frac{BD}{sin60°}=2R$,则△ABD的外接圆半径R=$\frac{\sqrt{57}}{3}$;
(3)在△ABC中,由正弦定理得:$\frac{AC}{sin30°}=2R=\frac{2\sqrt{57}}{3}$,
∴AC=$\frac{\sqrt{57}}{3}$.
点评 本题考查三角形的解法,考查了正弦定理和余弦定理的应用,关键是四点共圆的判断,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {-1,1} | C. | {-1} | D. | {0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | -2 | C. | 2 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com