精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=aex+x2,g(x)=cosπx+bx,直线l与曲线y=f(x)切于点(0,f(0)),且与曲线y=g(x)切于点(1,g(1)),则a+b=-2,直线l的方程为x+y+1=0.

分析 求出f(x)的导数,可得切线的斜率a;求出g(x)的导数,可得切线的斜率b.由两点的斜率公式,解方程可得a=b=-1,进而由斜截式方程可得所求切线的方程.

解答 解:函数f(x)=aex+x2的导数为f′(x)=aex+2x,
可得在点(0,f(0))处的切线的斜率为a;
g(x)=cosπx+bx的导数为g′(x)=-πsinπx+b,
可得在(1,g(1))处的切线的斜率为b,
由题意可得a=b=$\frac{a-(b-1)}{0-1}$,
解得a=b=-1.
∴a+b=-2,
即有f(0)=a=-1,
可得切线的方程为y=-x-1.即x+y+1=0.
故答案为:-2,x+y+1=0.

点评 本题考查导数的运用:求切线的斜率,考查直线的斜率和直线方程的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD中,若∠DAB=60°,∠ABC=30°,∠BCD=120°,AD=2,AB=5.
(1)求BD的长;
(2)求△ABD的外接圆半径R;
(3)求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有(  )
A.30B.32C.34D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=8,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是120°,
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥(k$\overrightarrow{a}$-$\overrightarrow{b}$),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若tanα=2tanβ且tan(α-β)=$\frac{3}{19}$,则tanα等于(  )
A.$\frac{1}{3}$或6B.$\frac{1}{6}$或3C.$\frac{1}{3}$或-6D.$\frac{1}{6}$或-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线x+y+2=0截圆x2+y2-4x-5=0的弦长是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4.E为BC的中点,F为CC1的中点.
(1)求EF与平面ABCD所成的角的余弦值;
(2)求二面角F-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD‖BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD=$\sqrt{3}$.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=t•MC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知⊙O的半径为2,A为圆上的一个定点,B为圆上的一个动点,若点A,B,O不共线,且|$\overrightarrow{AB}$-t$\overrightarrow{AO}$|≥|$\overrightarrow{BO}$|对任意t∈R恒成立,则$\overrightarrow{AB}$•$\overrightarrow{AO}$=(  )
A.4$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案