精英家教网 > 高中数学 > 题目详情
((本小题满分12分)

如图,DC⊥平面ABCEB // DCAC =BC = EB = 2DC=2,∠ACB=120°,
PQ分别为AEAB的中点。
(1)证明:PQ //平面ACD;   
(2)求AD与平面ABE所成角的正弦值。

15题

 

解:(1)因为P,Q分别为 AE,AB的中点,
所以PQ//EB.又DC//EB,因此PQ//DC,
从而PQ//平面ACD.………………………………5分     
(2)如图,连接CQ, DP.
因为Q为AB的中点,且AC =BC,所以CQ⊥ AB.
因为DC⊥ 平面ABC,EB//DC,    
所以EB⊥ 平面ABC.
因此CQ⊥ EB
故CQ⊥ 平面ABE.
由(1)有PQ//DC,又PQ=EB=DC,
所以四边形CQPD为平行四边形,
故DP// CQ ,
因此DP ⊥平面ABE,∠ DAP为AD和平面ABE所成的角.
在Rt ∆DPA中,AD=,DP=1,
sin ∠ DAP=
因此AD和平面ABE所成角的的正弦值为………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
如图,平面平面,点EFO分别为线段PAPBAC的中点,点G是线段CO的中点,.求证:

(1)平面
(2)∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图所示,平面,底面为菱形,的中点.
(1)求证:平面;
(2)求证://平面
(3) 求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、如图所示,棱长为1的正方体中,,
(1)建立适当的坐标系,求M、N点的坐标。(2)求的长度。(12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点。
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P一EC一D的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.
(Ⅰ) 求证:直线平面
(Ⅱ)求平面和平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体中,异面直线的夹角的大小为__________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A\B、C是表面积为的球面上三点,且AB=2,BC=4,ABC=为球心,则二面角0-AB-C的大小为( )
A.           B.            C.           D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。

(I)求证:平面ACC1A1⊥平面BCC1B;
(II)求直线DA1与平面BCC1B1所成角的大小;
(III)求二面角A—DC1—C的大小。

查看答案和解析>>

同步练习册答案