精英家教网 > 高中数学 > 题目详情
(本小题共12分)
在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。

(I)求证:平面ACC1A1⊥平面BCC1B;
(II)求直线DA1与平面BCC1B1所成角的大小;
(III)求二面角A—DC1—C的大小。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)

如图,DC⊥平面ABCEB // DCAC =BC = EB = 2DC=2,∠ACB=120°,
PQ分别为AEAB的中点。
(1)证明:PQ //平面ACD;   
(2)求AD与平面ABE所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,四棱锥的底面是矩形,底面边的中点,与平面 所成的角为45°,且
(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥的底面是一个边长为4的正方形,侧面是正三角形,侧面底面
(Ⅰ)求四棱锥的体积;
(Ⅱ)求直线与平面所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

球O的半径为1,该球的一小圆O1上两点A、B的球面距离为,则=(   )
A.                         B.                         C.                       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分〗2分)
在三棱锥S -ABC中,是边长为4的正三角形,点S在平面ABC上的射影恰为AC的中点,,M、N分别为AB、SB的中点.

(1) 证明AC丄SB;
(2) 求直线CN与平面ABC所成角的余弦值;
(3) 求点B到平面CMN的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥S—ABC中,SA⊥底面ABCSA=4,AB=3,DAB的中点∠ABC=90°,则点D到面SBC的距离等于  
A.      B         C.                    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为4,P、Q分别为棱上的中点,M在上,且,过P、Q、M的平面与交于点N,则MN=             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三条不重合的直线,是三个不重合的平面,给出下列四个命题:
①若
②若直线与平面所成的角相等,则//
③存在异面直线,使得//// ,//,则//
④若,则
其中正确命题的个数是
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案