精英家教网 > 高中数学 > 题目详情
三棱锥S—ABC中,SA⊥底面ABCSA=4,AB=3,DAB的中点∠ABC=90°,则点D到面SBC的距离等于  
A.      B         C.                    D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
如图,平面平面,点EFO分别为线段PAPBAC的中点,点G是线段CO的中点,.求证:

(1)平面
(2)∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点。
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P一EC一D的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在长方体中,上的动点,点的中点.

(1)当点在何处时,直线//平面,并证明你的结论;
(2)在(Ⅰ)成立的条件下,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.
(Ⅰ) 求证:直线平面
(Ⅱ)求平面和平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


AD=2,PA=2,PD=2,∠PAB=60°。
(1)证明:AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P-BD-A的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。

(I)求证:平面ACC1A1⊥平面BCC1B;
(II)求直线DA1与平面BCC1B1所成角的大小;
(III)求二面角A—DC1—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)(注意:在试题卷上作答无效)
如图,四棱锥S -ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=,点E、G分别在AB、SC上,且
(1) 证明:BC//平面SDE;
(2) 求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平行于平面,直线在平面内,则的位置关系可能为   (    )
平行   异面   平行或异面  平行、相交或异面

查看答案和解析>>

同步练习册答案