精英家教网 > 高中数学 > 题目详情
(本小题共12分)(注意:在试题卷上作答无效)
如图,四棱锥S -ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=,点E、G分别在AB、SC上,且
(1) 证明:BC//平面SDE;
(2) 求面SAD与面SBC所成二面角的大小.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图已知,点P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD 。

(1)求证:
(2)求直线PB与平面ABE所成的角
(3)求A点到平面PCD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为1的菱形,, 底面, ,的中点.
(Ⅰ)、求异面直线AB与MD所成角的大小;
(Ⅱ)、求平面与平面所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b是异面直线,直线c∥a,则c与b的位置关系是 
A.相交B.异面C.平行D.异面或相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在底面边长为2的正四棱锥中,若侧棱与底面所成的角大小为,则此正四棱锥的斜高长为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分〗2分)
在三棱锥S -ABC中,是边长为4的正三角形,点S在平面ABC上的射影恰为AC的中点,,M、N分别为AB、SB的中点.

(1) 证明AC丄SB;
(2) 求直线CN与平面ABC所成角的余弦值;
(3) 求点B到平面CMN的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点O为正方体ABCD—A1B1C1D1底面ABCD的中心,则下列结论正确的是(   )
A.直线平面AB1C1B.直线OA1//直线BD1
C.直线直线ADD.直线OA1//平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥S—ABC中,SA⊥底面ABCSA=4,AB=3,DAB的中点∠ABC=90°,则点D到面SBC的距离等于  
A.      B         C.                    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过球面上ABC三点的截面和球心的距离是球直径的,且,则球面的面积为           

查看答案和解析>>

同步练习册答案