精英家教网 > 高中数学 > 题目详情
已知向量
a
=(1+sin2x,sinx-cosx)
b
=(1,sinx+cosx)
,函数f(x)=
a
b

(1)求f(x)的最大值及相应的x的值;
(2)若f(θ)=
8
5
,求cos2(
π
4
-2θ)
的值.
分析:(1)根据向量的数量积的运算法则可求得函数f(x)的解析式,进而利用二倍角公式和两角和公式化简整理利用正弦函数的性质求得函数的最大值和相应的x的值.
(2)根据(1)中函数的解析式和f(θ)=
8
5
求得sin2θ-cos2θ=
3
5
两边平方利用同角三角函数的基本关系和二倍角公式求得sin4θ的值,最后利用诱导公式,把sin4θ的值代入即可.
解答:解:(1)因为
a
=(1+sin2x,sinx-cosx)
b
=(1,sinx+cosx)

所以f(x)=1+sin2x+sin2x-cos2x=1+sin2x-cos2x=
2
sin(2x-
π
4
)+1

因此,当2x-
π
4
=2kπ+
π
2
,即x=kπ+
3
8
π
(k∈Z)时,f(x)取得最大值
2
+1


(2)由f(θ)=1+sin2θ-cos2θ及f(θ)=
8
5
sin2θ-cos2θ=
3
5

两边平方得1-sin4θ=
9
25
,即sin4θ=
16
25

因此,cos2(
π
4
-2θ)=cos(
π
2
-4θ)=sin4θ=
16
25
点评:本题主要考查了利用两角和公式和二倍角公式化简求值,诱导公式的运用,平面向量的运算.考查了学生综合运用基础知识的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知向量
a
=(x,y-4),
b
=(kx,y+4)
(k∈R),
a
b
,动点M(x,y)的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当k=1时,已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部
的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?
若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,S是该三角形的面积,已知向量
p
=(1,2sinA)
q
=(sinA,1+cosA)
,且满足
p
q

(1)求角A的大小;(2)若a=
3
,S=
3
3
4
,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos
x
2
,1),
b
=(cos
π+x
2
,3cosx),
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=(
a
-
b
)•
a
,在△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=4,a=
10
,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)求证:
a
b

(2)是否存在最小的常数k,对于任意的正数s,t,使
x
=
a
+(t+2s)
b
y
=-k
a
+(
1
t
+
1
s
)
b
垂直?如果存在,求出k的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx,cosωx),
b
=(
3
sinωx,cosωx),其中0<ω<2,f(x)=
a
b
+
1
2
,其图象的一条对称轴为x=
π
6

(1)求f(x)的表达式;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,S为其面积,若f(
A
2
)=2 , b=2 , S=2
3
,求a的值.

查看答案和解析>>

同步练习册答案