精英家教网 > 高中数学 > 题目详情
过抛物线焦点垂直于对称轴的弦叫做抛物线的通径.如图,已知抛物线y2=2px(p>0),过其焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,过A、B作准线的垂线,垂足分别为A1、B1
(1)求出抛物线的通径,证明x1x2和y1y2都是定值,并求出这个定值;
(2)证明:A1F⊥B1F.
分析:(1)当AB⊥x时,根据抛物线方程得到A、B两点的坐标,直接计算可得通径的长,并且x1x2=
p2
4
y1y2=-p2,是定值;当AB与x轴不垂直时,设AB方程的点斜式形式,并且与抛物线联解消去x得到关于y的方程,利用根与系数的关系算出y1y2=-p2,结合抛物线方程即可得到x1x2=
p2
4
,从而使命题得到证明.
(2)根据题意,得出A1、B1的坐标,从而得到向量
FA1
FB1
的坐标,计算
FA1
FB1
数量积并进行化简得到0,由此即可得到A1F⊥B1F.
解答:解:∵抛物线方程是y2=2px,
∴抛物线的焦点F(
p
2
,0)
,准线x=-
p
2

(1)①当AB⊥x时,可得A(
p
2
,p)
B(
p
2
,-p)

∴通径长为p-(-p)=2p,
可得此时x1x2=
p2
4
y1y2=-p2,是定值.
②AB与x轴不垂直时,设AB:y=k(x-
p
2
)
(k≠0)
y=k(x-
p
2
)
y2=2px
消去x,得
k
2p
y2-y-
kp
2
=0

由根与系数的关系,得y1y2=-p2
再代入到抛物线方程,可得x1x2=
y12
2p
×
y22
2p
=
p2
4
,是定值.
综上所述,过焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,必有x1x2=
p2
4
y1y2=-p2是定值;
(2)根据题意,可得A1(-
p
2
y1)
B1(-
p
2
y2)
F(
p
2
,0)

∵焦点F(
p
2
,0)

FA1
=(p,y1),
FB1
=(p,y2)

由此可得
FA1
FB1
=p2+y1y2=p2+(-p2)=0

FA1
FB1
,即A1F⊥B1F.
点评:本题给出抛物线经过焦点的弦的端点A(x1,y1)、B(x2,y2),它们在准线上的射影点分别为A1、B1,求证x1x2和y1y2都是定值并证明A1F⊥B1F.着重考查了抛物线的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右顶点分别为A、B,椭圆C的右焦点为F,过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN
必过x轴上的一定点,并求出此定点的坐标;
(3)实际上,第(2)小题的结论可以推广到任意的椭圆、双曲线以及抛物线,请你对抛物线y2=2px(p>0)写出一个更一般的结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)设m>0,过点M(m,0)作方向向量为
d
=(1,
3
)
的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;
(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.
②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

科目:高中数学 来源:上海市长宁区2012届高三4月教学质量检测(二模)数学理科试题 题型:044

设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.

(1)求抛物线C的方程;

(2)设m>0,过点M(m,0)作方向向量为=(1,)的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;

(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.

②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三4月教学质量检测(二模)理科数学试卷(解析版) 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。

设抛物线的焦点为,过且垂直于轴的直线与抛物线交于两点,已知.

(1)求抛物线的方程;

(2)设,过点作方向向量为的直线与抛物线相交于两点,求使为钝角时实数的取值范围;

(3)①对给定的定点,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。

②对,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?(只要求写出结论,不需用证明)

 

查看答案和解析>>

科目:高中数学 来源:2012年上海市长宁区高考数学二模试卷(理科)(解析版) 题型:解答题

设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)设m>0,过点M(m,0)作方向向量为的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;
(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.
②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

同步练习册答案