精英家教网 > 高中数学 > 题目详情

如图,已知正方体分别为各个面的对角线;

(1)求证:
(2)求异面直线所成的角.

(1)∵,又∵(2)

解析试题分析:(1)在正方体中.
.         1分
.                        2分
又∵四边形为正方形.
.                        3分
又∵.  5分
.                    6分
(2)∵ .
∴四边形为平行四边形;即.         8分
就是异面直线所成的角.          9分
连接,易得为等边三角形,则.    11分
∴异面直线所成的角为.             12分
考点:线面垂直的判定即异面直线所成角
点评:要证线面垂直需证直线垂直于平面内两条相交直线,求异面直线所成角的步骤:空间取一点,过该点作两异面直线的平行线,找到异面直线所成角,求解三角形得到所求角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,
且AC=AD=CD=DE=2,AB=1.

(Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体中,四边形是正方形,,二面角是直二面角

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.

(Ⅰ) 当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;
(Ⅱ) 设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点.

(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC=   EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB

(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1.

(Ⅰ)证明:BC丄AB1
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知菱形所在平面与直角梯形所在平面互相垂直,,分别是线段,的中点.

(I)求证:平面 平面;
(Ⅱ)点在直线上,且//平面,求平面与平面所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

长方体中,底面是正方形,上的一点.

⑴求异面直线所成的角;
⑵若平面,求三棱锥的体积;

查看答案和解析>>

同步练习册答案