精英家教网 > 高中数学 > 题目详情

长方体中,底面是正方形,上的一点.

⑴求异面直线所成的角;
⑵若平面,求三棱锥的体积;

(1)  (2)

解析试题分析:以为原点,所在直线分别为轴、轴、轴建立空间直角坐标系 1分
⑴依题意,   ,
所以                                  3分
所以,                      所以异面直线所成角为      6分
⑵设,则                                    7分
因为平面
平面,所以                                            9分
所以,所以              10分
所以   
考点:异面直线所成的角,椎体的体积
点评:解决的关键是能合理的建立空间直角坐标系,然后借助于法向量和直线的方向向量来表示求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知正方体分别为各个面的对角线;

(1)求证:
(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形, 中点.

(Ⅰ)证明:平面
(Ⅱ)求异面直线BS与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台。
如图,在四棱台中,下底是边长为的正方形,上底是边长为1的正方形,侧棱⊥平面.

(Ⅰ)求证:平面
(Ⅱ)求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面△为正三角形的直三棱柱中,的中点,点在平面内,

(Ⅰ)求证:;  
(Ⅱ)求证:∥平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形均为菱形,,且.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4-1:几何证明选讲
如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.

(1)求证:EF⊥CD;
(2)若∠ABD=30°,求证

查看答案和解析>>

同步练习册答案