精英家教网 > 高中数学 > 题目详情

选修4-1:几何证明选讲
如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.

(1)求证:EF⊥CD;
(2)若∠ABD=30°,求证

(1)先证明△AOB≌△DOC, 从而得出∠ODC=∠OAB,进而可以证明结论;
(2)先证明△DOC∽△DFO,利用面积比等于相似比的平方比即可证明.

解析试题分析:(1)∵ △AOB为直角三角形,且E 为AB边的中点,
∴EO="EA=EB," ∴∠EAO=∠EOA, ∠EOB=∠EBO,
又△AOB≌△DOC, ∴∠ODC=∠OAB,
∠EOB=∠DOF(对顶角),∴∠ODC+∠DOF=90°
∴∠DFO=90°
∴EF⊥CD
(2)∵∠ABD=30°∴∠EOB=∠DOF=30°,
∴在Rt△DOF中,DF=OD,△DOC∽△DFO,
所以根据面积比等于相似比的平方比,知
考点:本小题主要考查两条直线垂直、三角形相似等的证明.
点评:在利用相似三角形解答时,注意通过对应边找对应角,通过对应角找对应边,不要找错了。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

长方体中,底面是正方形,上的一点.

⑴求异面直线所成的角;
⑵若平面,求三棱锥的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.

(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:OF//平面ACD;
(Ⅱ)在上是否存在点,使得平面平面ACD?若存在,试指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点EF分别在棱BB1CC1上,且BEBBC1FCC1.

(1)求异面直线AEA1 F所成角的大小;
(2)求平面AEF与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面是菱形,

(Ⅰ)求证:
(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(Ⅰ)求证:DF⊥平面PAF;
(Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四面体中,,且E、F分别是AB、BD的中点,

求证:(1)直线EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.

(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.

查看答案和解析>>

同步练习册答案