已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
(Ⅰ)由P-ABCD与Q-ABCD都是正四棱锥,得到PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
(Ⅱ).(Ⅲ) .
解析试题分析:(Ⅰ)连结AC、BD,设.
由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.
由(Ⅰ),QO⊥平面ABCD. 故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P(0,0,1),A(,0,0),Q(0,0,-2),B(0,,0).
所以
于是.
从而异面直线AQ与PB所成的角是.
(Ⅲ)由(Ⅱ),点D的坐标是(0,-,0),,
,设是平面QAD的一个法向量,由
得.
取x=1,得.
所以点P到平面QAD的距离.
考点:本题主要考查立体几何中的垂直关系,距离及角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题解法较多,特别是求角及距离时,运用了“向量法”,实现了问题的有效转化。对考生计算能力要求较高
科目:高中数学 来源: 题型:解答题
选修4-1:几何证明选讲
如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O ,E是AB边的中点,EO的延长线交CD于F.
(1)求证:EF⊥CD;
(2)若∠ABD=30°,求证
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面,,分别是,的中点.
(1)求证:∥平面;
(2)若为上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,边长为a的正方体ABCD-A1B1C1D1中,E为CC1的中点.
(1)求直线A1E与平面BDD1B1所成的角的正弦值
(2)求点E到平面A1DB的距离
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)如图,四边形ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.
求证:(1) PA∥平面BDE .
(2)平面PAC平面BDE .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD
(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求的值。若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)证明:SC⊥EF;
(II)若求三棱锥S—AEF的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com