精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABCAESBEAFSCF.

(I)证明:SCEF
(II)若求三棱锥SAEF的体积.

(1)根据题意,利用线面垂直,然后证明得到 ,利用线面垂直的性质定理得到。
(2)

解析试题分析:解:(I) 
 
 
(II)中,
 
由(I)知
 
由(I)知
考点:本试题考查了线线的位置关系,以及体积的求解。
点评:解决该试题的关键是熟练的运用线面垂直的性质定理,来证明线线垂直,同时能利用等体积法来求解棱锥的体积,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四面体中,,且E、F分别是AB、BD的中点,

求证:(1)直线EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.

(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,

⑴求证:A1C⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)如图,在六面体中,.

求证:(1);(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在直三棱柱(侧棱垂直底面)中,,且异面直线所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案