(Ⅰ)30°(Ⅱ)
解析试题分析:(Ⅰ) 延长AD,FE交于Q.
因为ABCD是矩形,所以
BC∥AD,
所以∠AQF是异面直线EF与BC所成的角.
在梯形ADEF中,因为DE∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.
(Ⅱ) 方法一:
设AB=x.取AF的中点G.由题意得
DG⊥AF.
因为平面ABCD⊥平面ADEF,AB⊥AD,所以
AB⊥平面ADEF,
所以
AB⊥DG.
所以
DG⊥平面ABF.
过G作GH⊥BF,垂足为H,连结DH,则DH⊥BF,
所以∠DHG为二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得
DG=.
在直角△BAF中,由=sin∠AFB=,得
=,
所以
GH=.
在直角△DGH中,DG=,GH=,得
DH=.
因为cos∠DHG==,得
x=,
所以 AB=.
方法二:设AB=x.
以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.则
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,,0),B(-2,0,x),
所以 =(1,-,0),=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
设=(x1,y1,z1)为平面BFD的法向量,则
所以,可取=(,1,).
因为cos<,>==,得
x=,
所以
AB=.
考点:异面直线所成角 二面角
点评:本题主要考查空间点、线、面位置关系,异面直线所成角、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。
科目:高中数学 来源: 题型:解答题
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。
(1)证明:平面PBC;
(2)求三棱锥D—ABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)如图,四边形ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.
求证:(1) PA∥平面BDE .
(2)平面PAC平面BDE .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD
(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求的值。若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)证明:SC⊥EF;
(II)若求三棱锥S—AEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。
①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点.
(1)求证:AC1∥平面BDE;(2)求异面直线A1E与BD所成角。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com